Utilization of arylazido-ATP by sarcoplasmic reticulum ATPase in the absence of calcium. 1988

R G Oliveira, and C Coan, and S Verjovski-Almeida
Departamento de Bioquimica, Universidade Federal do Rio de Janeiro, Brazil.

The ATP analog arylazido-ATP 5'-triphosphate) (3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate) was shown to phosphorylate the calcium-ATPase from sarcoplasmic reticulum in the absence of calcium. Levels of 0.6 nmol of phosphoenzyme/mg of protein were attained. Calcium either at micromolar or millimolar concentrations did not affect the level of phosphoenzyme. A non-Michaelian dependence of the hydrolytic activity as a function of analog concentration was obtained in the absence of calcium. Calcium addition did not modify either the analog concentration dependence for the activation of hydrolysis or the maximal rate of hydrolysis. In the presence of micromolar calcium, arylazido-ATP promoted calcium accumulation inside the vesicles, and a steady-state level of 100 nmol of calcium/mg of protein was maintained. ESR spectra of spin-labeled ATPase showed that addition of the analog in the absence of calcium caused a spectral change, and the resulting spectral parameters were different from those obtained for ATP under similar conditions. Calcium addition did not cause any further modification of the spectra, which was clearly distinct from the change when ATP was used. The partition coefficient of the analog from a water medium into an organic phase was found to be 1 order of magnitude higher than that of ATP. It is suggested that it might be the hydrophobic nature of the analog which makes it bypass the calcium requirement for utilization of the substrate by the ATPase.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

R G Oliveira, and C Coan, and S Verjovski-Almeida
March 1983, The Journal of biological chemistry,
R G Oliveira, and C Coan, and S Verjovski-Almeida
January 1982, Annals of the New York Academy of Sciences,
R G Oliveira, and C Coan, and S Verjovski-Almeida
August 1980, Archives of biochemistry and biophysics,
R G Oliveira, and C Coan, and S Verjovski-Almeida
January 1988, Archives of biochemistry and biophysics,
R G Oliveira, and C Coan, and S Verjovski-Almeida
May 1987, The Journal of biological chemistry,
R G Oliveira, and C Coan, and S Verjovski-Almeida
April 2003, Annals of the New York Academy of Sciences,
R G Oliveira, and C Coan, and S Verjovski-Almeida
November 1992, Annals of the New York Academy of Sciences,
R G Oliveira, and C Coan, and S Verjovski-Almeida
January 1988, Progress in clinical and biological research,
R G Oliveira, and C Coan, and S Verjovski-Almeida
January 2007, Advances in experimental medicine and biology,
R G Oliveira, and C Coan, and S Verjovski-Almeida
November 2013, Human gene therapy,
Copied contents to your clipboard!