Multiple synapsin I messenger RNAs are differentially regulated during neuronal development. 1988

C A Haas, and L J DeGennaro
Department of Neurochemistry, Max Planck Institute for Psychiatry, Martinsried, Federal Republic of Germany.

Synapsin I is a neuron-specific protein consisting of two isoforms Ia and Ib. It is thought to play a role in the regulation of neurotransmitter release. In this study the structure and expression of two classes of synapsin I mRNA have been examined. The two mRNA classes have molecular sizes of 3.4 and 4.5 kb, respectively. Both classes translate into synapsin I polypeptides and display a high degree of base sequence homology. Utilizing an oligonucleotide-directed RNase H assay we have shown that both mRNA classes have a common start site of transcription and differ from one another toward their 3' ends. The expression of the two synapsin I mRNA classes is differentially regulated during the development of the rat brain and cerebellum. In the cerebellum the 4.5-kb transcript is expressed until postnatal day 7, after which it decreases to an undetectable level. The 3.4-kb mRNA is found throughout cerebellar development and in the adult. This suggests that the 3.4-kb mRNA class consists of messages which can encode both synapsin I polypeptides. Using quantitative Northern blot analysis a peak in the expression of this mRNA was observed at postnatal day 20. The maximum expression of the 3.4-kb class coincides with the period of synaptogenesis in the cerebellum. In addition to the developmental time course of synapsin mRNA expression a description of its spatial distribution throughout the cerebellum was performed using in situ hybridization histochemistry. From postnatal day 15 onwards, with a maximum at postnatal day 20, synapsin mRNA was localized in the internal granule cell layer of the cerebellum. On a cellular level, the granule cells, but not the neighboring Purkinje cells, express high levels of synapsin mRNA. These observations implicate developmentally coordinated differential RNA splicing in the regulation of neuron-specific gene expression and substantiate the correlation of synapsin gene expression with the period of synaptogenic differentiation of neurons.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

C A Haas, and L J DeGennaro
January 1998, Molecular medicine (Cambridge, Mass.),
C A Haas, and L J DeGennaro
January 1994, Experimental brain research,
C A Haas, and L J DeGennaro
December 1987, The Journal of cell biology,
C A Haas, and L J DeGennaro
June 2001, American journal of physiology. Lung cellular and molecular physiology,
C A Haas, and L J DeGennaro
March 1996, Experimental brain research,
C A Haas, and L J DeGennaro
March 1993, Brain research. Molecular brain research,
Copied contents to your clipboard!