Changes in the expression of synapsin I and II messenger RNA during postnatal rat brain development. 1996

U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
Universitäts-Kinderklinik, Berlin, Germany.

Synapsin Ia, Ib, IIa, and IIb are neuronal phosphoproteins, which are supposed to play a role in the short-term regulation of neurotransmitter release. Besides a high degree of homology among the four synapsin subtypes, there are structural differences in the 3'end of their coding region. Here we present the first extensive study of the expression of their gene transcripts by using in situ hybridization and northern blot analysis. Our results show regionally and temporally distinct expression patterns of synapsin Ia, Ib, IIa, and IIb, which suggests different functional properties of the four synapsin subtypes. There was no specific messenger RNA (mRNA) expression of synapsin IIb in most brain regions apart from the cerebellum, suggesting a minor functional role of this synapsin subtype. Synapsin Ia, Ib, and IIa mRNA were expressed earlier in ontogenetically older brain regions such as the piriform cortex, the thalamus, and the hippocampus and later in ontogenetically younger areas such as the neocortex and the cerebellum. Owing to the distinct expression pattern of the synapsin subtypes, we suppose that the synapsins might be essential for the underlying molecular mechanism of pattern formation and plasticity in distinct brain regions during different states of rat brain development.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D016704 Synapsins A family of synaptic vesicle-associated proteins involved in the short-term regulation of NEUROTRANSMITTER release. Synapsin I, the predominant member of this family, links SYNAPTIC VESICLES to ACTIN FILAMENTS in the presynaptic nerve terminal. These interactions are modulated by the reversible PHOSPHORYLATION of synapsin I through various signal transduction pathways. The protein is also a substrate for cAMP- and CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. It is believed that these functional properties are also shared by synapsin II. Synapsin,Synapsin I,Synapsin II,Synapsin III

Related Publications

U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
January 1990, Experimental brain research,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
January 1997, Neuroscience,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
August 1997, Neuroscience research,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
January 1998, Molecular medicine (Cambridge, Mass.),
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
January 1997, Neuroscience,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
June 1997, Neuroscience,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
September 2013, Journal of child and adolescent psychopharmacology,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
August 1994, Journal of cell science,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
January 1988, The Journal of cell biology,
U Zurmöhle, and J Herms, and R Schlingensiepen, and W Brysch, and K H Schlingensiepen
January 2000, Genome biology,
Copied contents to your clipboard!