Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst. 1988

L P Akard, and D English, and T G Gabig
Department of Medicine, Indiana University, Indianapolis.

The cell-free system for activation of the neutrophil NADPH oxidase allowed us to examine activation of the oxidase in the absence of its NADPH-dependent turnover. The covalent sulfhydryl-modifying reagent N-ethylmaleimide completely inhibited the activation step (Ki = 40 mumol/L) in the cell-free system but had no effect on turnover of the preactivated particulate NADPH oxidase (up to 1 mmol/L). When N-ethylmaleimide was added to intact neutrophils during the period of maximal O2 generation in response to stimuli that activate the respiratory burst (phorbol myristate acetate, f-Met-Leu-Phe, opsonized zymosan, arachidonic acid), O2- generation ceased within seconds. Study of components of the cell-free activation system indicated that the cytosolic cofactor was irreversibly inhibited by N-ethylmaleimide whereas the N-ethylmaleimide-treated, membrane-associated oxidase could be activated by arachidonate and control cytosolic cofactor. Likewise, the cell-free system prepared from intact neutrophils that had been briefly exposed to N-ethylmaleimide and then washed reflected the effects of N-ethylmaleimide on the isolated cell-free components: cytosolic cofactor activity was absent, but the membrane oxidase remained fully activatable. Thus inhibition of oxidase activation by N-ethylamaleimide unmasked a rapid deactivation step that was operative in intact neutrophils but not in isolated particulate NADPH oxidase preparations. The demonstrated specificity of N-ethylmaleimide for oxidase activation and lack of effect on turnover of the NADPH oxidase suggested that sustained O2- generation by intact neutrophils was a result of continued replenishment of a small pool of active oxidase. The existence of an inactive pool of NADPH oxidase molecules in particulate preparations from stimulated neutrophils was supported more directly by activating these preparations again in the cell-free system.

UI MeSH Term Description Entries
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D019255 NADPH Oxidases A family of membrane-associated flavoprotein NADPH-dependent oxidoreductases that catalyze the univalent reduction of OXYGEN to create SUPEROXIDES. Structurally, they are characterized by six N-terminal transmembrane ALPHA-HELICES, a FLAVIN-ADENINE DINUCLEOTIDE (FAD)-binding region, and a C-terminal NADPH-binding region. They are expressed primarily by EPITHELIAL CELLS in gut, kidney, colon, and smooth muscle tissues, as well as GRANULOCYTES and function to transfer electrons across membranes to molecular oxygen. Defects in the production of superoxide ions by some NADPH oxidases result in GRANULOMATOUS DISEASE, CHRONIC. NADPH Oxidase,NAD(P)H Oxidases,NAD(P)H oxidase,Nox Proteins,Oxidase, NADPH,Oxidases, NADPH

Related Publications

L P Akard, and D English, and T G Gabig
December 1995, Seminars in cell biology,
L P Akard, and D English, and T G Gabig
February 1991, Biochemical Society transactions,
L P Akard, and D English, and T G Gabig
October 1986, The Journal of biological chemistry,
L P Akard, and D English, and T G Gabig
June 2004, Hypertension (Dallas, Tex. : 1979),
L P Akard, and D English, and T G Gabig
September 1987, The Journal of biological chemistry,
L P Akard, and D English, and T G Gabig
January 2002, Journal of electron microscopy,
L P Akard, and D English, and T G Gabig
April 1991, The Journal of biological chemistry,
L P Akard, and D English, and T G Gabig
September 1979, The Journal of biological chemistry,
L P Akard, and D English, and T G Gabig
February 1996, Biochimica et biophysica acta,
Copied contents to your clipboard!