Increased activity of the respiratory burst in cord blood neutrophils: kinetics of the NADPH oxidase enzyme system in subcellular fractions. 1987

D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman

Previous studies with neutrophils from newborn infants compared to neutrophils from healthy adults have documented increased respiratory burst activity including enhanced superoxide anion (O2-) production, nitroblue tetrazolium dye reduction, and hexose monophosphate shunt activity. To investigate the biochemical basis for these observations, we examined oxidative metabolism in membrane-rich fractions of neutrophils. Neutrophils from cord blood of vaginally delivered term infants or healthy adults were disrupted by nitrogen cavitation and subcellular fractions collected on discontinuous sucrose density gradients. Subcellular fractions of newborn neutrophils separated in a fashion identical with samples from healthy adults. Activity of alkaline phosphatase, a plasma membrane marker, was increased 4- to 5-fold in disrupted cells free from nuclei (postnuclear supernatant) as well as plasma membrane fractions from newborn samples compared to those from healthy adults. Content of lactoferrin, a specific granule marker, was decreased in postnuclear supernatants but equivalent in specific granule fractions of newborn cells compared to those from adults. No differences were noted in myeloperoxidase content of postnuclear supernatants or any other subcellular fraction. Plasma membrane fractions from phorbol myristate acetate-stimulated cord blood neutrophils made significantly more O2- than samples from adults (newborn 32.9 +/- 8.1 nmol O2-/min/mg protein mean +/- SEM, n = 3 versus adult 10.8 +/- 4.2, n = 3; p less than 0.05). Plasma membrane-rich fractions were also collected by the technique of differential centrifugation and kinetic parameters of the NADPH-dependent oxidase enzyme(s) were measured for vaginally delivered newborn and adult samples.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.

Related Publications

D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
December 1995, Seminars in cell biology,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
February 1988, The Journal of biological chemistry,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
November 1990, European journal of biochemistry,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
February 1991, Biochemical Society transactions,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
February 1988, FEBS letters,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
October 1986, The Journal of biological chemistry,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
June 2004, Hypertension (Dallas, Tex. : 1979),
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
September 1986, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
D R Ambruso, and L C Stork, and B E Gibson, and G W Thurman
October 1994, Inflammation,
Copied contents to your clipboard!