The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen. 2017

T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
Institute of Agricultural Biology and Biotechnology,Lodi Unit,National Research Council,via Einstein,26900 Lodi,Italy.

Within recent years, there has been growing interest in the prediction of bull fertility through in vitro assessment of semen quality. A model for fertility prediction based on early evaluation of semen quality parameters, to exclude sires with potentially low fertility from breeding programs, would therefore be useful. The aim of the present study was to identify the most suitable parameters that would provide reliable prediction of fertility. Frozen semen from 18 Italian Holstein-Friesian proven bulls was analyzed using computer-assisted semen analysis (CASA) (motility and kinetic parameters) and flow cytometry (FCM) (viability, acrosomal integrity, mitochondrial function, lipid peroxidation, plasma membrane stability and DNA integrity). Bulls were divided into two groups (low and high fertility) based on the estimated relative conception rate (ERCR). Significant differences were found between fertility groups for total motility, active cells, straightness, linearity, viability and percentage of DNA fragmented sperm. Correlations were observed between ERCR and some kinetic parameters, and membrane instability and some DNA integrity indicators. In order to define a model with high relation between semen quality parameters and ERCR, backward stepwise multiple regression analysis was applied. Thus, we obtained a prediction model that explained almost half (R 2=0.47, P<0.05) of the variation in the conception rate and included nine variables: five kinetic parameters measured by CASA (total motility, active cells, beat cross frequency, curvilinear velocity and amplitude of lateral head displacement) and four parameters related to DNA integrity evaluated by FCM (degree of chromatin structure abnormality Alpha-T, extent of chromatin structure abnormality (Alpha-T standard deviation), percentage of DNA fragmented sperm and percentage of sperm with high green fluorescence representative of immature cells). A significant relationship (R 2=0.84, P<0.05) was observed between real and predicted fertility. Once the accuracy of fertility prediction has been confirmed, the model developed in the present study could be used by artificial insemination centers for bull selection or for elimination of poor fertility ejaculates.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic
D055101 Semen Analysis The quality of SEMEN, an indicator of male fertility, can be determined by semen volume, pH, sperm concentration (SPERM COUNT), total sperm number, sperm viability, sperm vigor (SPERM MOTILITY), normal sperm morphology, ACROSOME integrity, and the concentration of WHITE BLOOD CELLS. Semen Quality,Semen Quality Analysis,Analyses, Semen Quality,Analysis, Semen Quality,Qualities, Semen,Quality Analyses, Semen,Quality, Semen,Semen Analyses,Semen Qualities,Semen Quality Analyses

Related Publications

T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
October 2022, Animal reproduction science,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
December 2019, Journal of dairy science,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
January 1993, Acta veterinaria Scandinavica,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
February 2007, Reproduction in domestic animals = Zuchthygiene,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
January 2021, Frontiers in veterinary science,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
February 2002, Biology of reproduction,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
October 2022, Theriogenology,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
June 2020, Theriogenology,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
April 2020, Animal reproduction science,
T M Gliozzi, and F Turri, and S Manes, and C Cassinelli, and F Pizzi
July 2009, Animal reproduction science,
Copied contents to your clipboard!