Generation of superoxide anion and lipid peroxidation in different cell types and subcellular fractions from rat testis. 1988

A Georgellis, and M Tsirigotis, and J Rydström
Department of Biochemistry, Arrhenius Laboratory, University of Stockholm, Sweden.

Mitochondria and microsomes from whole rat testis, seminiferous tubules and Leydig cells were investigated with respect to their capacity to generate superoxide anion. In addition, lipid peroxidation by whole testis mitochondria and microsomes was measured. In the presence of NADH and various respiratory inhibitors all three mitochondrial preparations catalyzed the formation of superoxide anion at a rate of 0.27-1.67 nmol/min.mg. This formation was concluded to be confined mainly to the NADH dehydrogenase region of the respiratory chain. Addition of NADPH to whole testis or Leydig cell mitochondria, but not tubule mitochondria, caused an additional formation of superoxide anion, which was unrelated to the respiratory chain, accelerated several-fold by menadione, and presumably catalyzed by NADPH-cytochrome c reductase and cytochrome P-450. Microsomes isolated from whole testis, seminiferous tubules, and Leydig cells generated superoxide anion at rates between 0.19 and 0.44 nmol/min.mg. These rates were also strongly stimulated by menadione. It is likely that both NADPH-cytochrome c reductase and cytochrome P-450 were involved in the microsomal generation of superoxide. Free radical scavengers of various types inhibited both the mitochondrial and microsomal formation of superoxide anion. Lipid peroxidation in whole testis essentially paralleled superoxide anion generation. However, the rate of mitochondrial lipid peroxidation was twice that of the microsomal rate. It is concluded that seminiferous tubules and Leydig cells generate superoxide anion at different rates and by different mechanisms. Together with cytochrome P-450-dependent hydroxylases, e.g., BP and DMBA hydroxylases, this superoxide generation may reflect a potential for cell-specific peroxidative damage in the testis.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

A Georgellis, and M Tsirigotis, and J Rydström
August 1972, Biochimica et biophysica acta,
A Georgellis, and M Tsirigotis, and J Rydström
February 2003, Progress in neuro-psychopharmacology & biological psychiatry,
A Georgellis, and M Tsirigotis, and J Rydström
June 2005, The Journal of pharmacy and pharmacology,
A Georgellis, and M Tsirigotis, and J Rydström
January 1992, Voprosy meditsinskoi khimii,
A Georgellis, and M Tsirigotis, and J Rydström
November 1990, Biochemical pharmacology,
A Georgellis, and M Tsirigotis, and J Rydström
March 1988, Chemical & pharmaceutical bulletin,
A Georgellis, and M Tsirigotis, and J Rydström
January 1990, Free radical biology & medicine,
A Georgellis, and M Tsirigotis, and J Rydström
February 1991, Planta medica,
A Georgellis, and M Tsirigotis, and J Rydström
January 1985, Acta biologica Hungarica,
Copied contents to your clipboard!