Inactivation of H+,K+-ATPase by a K+-competitive photoaffinity inhibitor. 1988

K B Munson, and G Sachs
Department of Medicine and Physiology, University of California, Los Angeles 90024.

A light-sensitive derivative, 2,3-dimethyl-8-[(4-azidophenyl)methoxy]imidazo[1,2-a]pyridine (DAZIP), of the drug 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine (SCH 28080) has been synthesized and shown to be a K+-competitive inhibitor of gastric H+,K+-ATPase in the dark. The apparent dissociation constants calculated for DAZIP at pH 6.4 and 7.4 were 1.8 +/- 0.2 and 4.7 +/- 1.2 microM, respectively. Inhibition required binding of DAZIP to a luminal-facing site on the enzyme. Irradiation in the presence of DAZIP and 2 mM Mg2+ resulted in irreversible loss of ATPase activity that was more than 2-fold greater at pH 6.4 than at pH 7.4, showing the enhanced efficiency of covalent incorporation at the lower pH. Further photolyses were conducted at pH 6.4 in the presence of either 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), ATP and CDTA, or MgATP. The specificity of light-dependent, covalent insertion of DAZIP for the site of reversible inhibition was shown both by protection against photoinactivation given by K+ (the competing ligand) and by the observation that the amount of K+-protectable photoinactivation approached a maximum limiting value as a function of DAZIP concentration. The effectiveness of K+ in protecting against photoinactivation was 100-fold greater in the presence of ATP and CDTA than in the presence of either Mg2+ or CDTA and suggests the formation of a ternary complex of the apoenzyme with ATP and tightly bound K+. The dissociation constant for DAZIP (2 microM) calculated from photolyses in the presence of MgATP without added K+ agreed with the kinetic experiments and suggests that DAZIP inhibits turnover by binding to E.MgATP.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

K B Munson, and G Sachs
July 1991, The Journal of biological chemistry,
K B Munson, and G Sachs
January 2007, Biochemical pharmacology,
K B Munson, and G Sachs
January 1992, Acta physiologica Scandinavica. Supplementum,
K B Munson, and G Sachs
November 2006, American journal of physiology. Gastrointestinal and liver physiology,
K B Munson, and G Sachs
April 1989, The Journal of biological chemistry,
K B Munson, and G Sachs
January 1985, Biochemical and biophysical research communications,
K B Munson, and G Sachs
March 1996, Nihon rinsho. Japanese journal of clinical medicine,
K B Munson, and G Sachs
August 1995, Endocrine journal,
Copied contents to your clipboard!