Ion transport across the frog olfactory mucosa: the action of cyclic nucleotides on the basal and odorant-stimulated states. 1988

K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
Department of Physiology and Biophysics, Medical College of Virginia, Richmond.

The action of cyclic nucleotides on the short-circuit current across the isolated bullfrog olfactory mucosa was studied both in the absence and presence of odorants. 8-Bromo-cAMP applied to the ciliated side of the mucosa caused a concentration-dependent, reversible increase in the basal short-circuit current, but not when it was applied to the submucosal side. The current had a sigmoidal concentration dependence described by the Hill equation. The magnitude of the odorant-evoked current was enhanced after bathing the ciliated side with cAMP analogs or modulators of intracellular cAMP. GTP gamma S added to the ciliated side increased the odorant-evoked current, while GDP beta S caused a decrease. Current transients induced by stimulating the ciliated side with either pulses of odorant or 8-bromo-cAMP were partially suppressed by amiloride, but only when amiloride and stimulant were presented simultaneously. Pulses of 8-bromo-cAMP and odorant presented simultaneously resulted in currents that added nonlinearly. In the absence of odorant, 8-bromo-cGMP caused a concentration-dependent decrease in net inward current that was reversed by 8-bromo-cAMP. Odorant-evoked currents were also reduced by 8-bromo-cGMP, and these could not be reversed by 8-bromo-cAMP. The results indicate that one type of olfactory transduction process involves the activation by cAMP of an inward current through an amiloride-sensitive apical ion channel and that this mechanism is mediated by a stimulatory G-protein.

UI MeSH Term Description Entries
D009712 Nucleotides, Cyclic Cyclic Nucleotide,Cyclic Nucleotides,Nucleotide, Cyclic
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015124 8-Bromo Cyclic Adenosine Monophosphate A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase. 8-Bromo-cAMP,8-Br Cyclic AMP,8-Bromo Cyclic AMP,8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8-Bromoadenosine 3',5'-Cyclic Monophosphate,Br Cycl AMP,8 Br Cyclic AMP,8 Bromo Cyclic AMP,8 Bromo Cyclic Adenosine Monophosphate,8 Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8 Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8 Bromo cAMP,8 Bromoadenosine 3',5' Cyclic Monophosphate,AMP, Br Cycl,Cyclic AMP, 8-Br,Cyclic AMP, 8-Bromo

Related Publications

K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
June 1977, Brain research,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
January 1974, Polish journal of pharmacology and pharmacy,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
March 1983, The Journal of physiology,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
March 1977, The Journal of general physiology,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
April 1979, Life sciences,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
January 1998, Peptides,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
October 1970, Brain research,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
August 1998, Archives of physiology and biochemistry,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
June 2003, Environmental toxicology and chemistry,
K C Persaud, and G L Heck, and S K DeSimone, and T V Getchell, and J A DeSimone
February 1981, Gastroenterology,
Copied contents to your clipboard!