Brain natriuretic peptide interacts with atrial natriuretic peptide receptor in cultured rat vascular smooth muscle cells. 1988

Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
Hypertension-Endocrine Division, National Cardiovascular Center Research Institute, Osaka, Japan.

The effect of synthetic porcine brain natriuretic peptide (pBNP), a novel brain peptide with sequence homology to alpha-human atrial natriuretic peptide (hANP), on receptor binding and cGMP generation, was studied in cultured rat vascular smooth muscle cells (VSMC) and compared with that of alpha-hANP. 125I-pBNP bound to the cells in a time-dependent manner similar to that of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for pBNP with affinity and capacity identical to those of alpha-hANP. pBNP and alpha-hANP were almost equipotent in inhibiting the binding of either radioligand and stimulating intracellular cGMP generation. These data indicate that BNP and ANP interact with the same receptor sites to activate guanylate cyclase in rat VSMC.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
July 1986, Biochemical and biophysical research communications,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
March 1987, European journal of pharmacology,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
July 1987, FEBS letters,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
November 1985, Biochemical and biophysical research communications,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
March 1988, European journal of biochemistry,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
January 1987, Clinical and experimental hypertension. Part A, Theory and practice,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
January 1998, Kidney & blood pressure research,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
March 1986, Life sciences,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
December 1988, Japanese circulation journal,
Y Hirata, and M Shichiri, and T Emori, and F Marumo, and K Kangawa, and H Matsuo
May 1997, Metabolism: clinical and experimental,
Copied contents to your clipboard!