Fibroblast growth factor inhibits luteinizing hormone-stimulated androgen production by cultured rat testicular cells. 1988

B C Fauser, and A Baird, and A J Hsueh
Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla 92093.

The effect of fibroblast growth factor (FGF) on LH-stimulated testosterone production was investigated using primary cultures of rat testicular cells. Testicular cells obtained from neonatal rats (8-9 days of age) were maintained in culture for 3 days and then challenged with LH with or without basic FGF. After 3 additional days of culture, the media were collected for steroid RIA. LH treatment of cultured cells stimulated testosterone production in a dose-dependent fashion whereas FGF alone did not affect androgen biosynthesis. In contrast, cotreatment with FGF caused a dose-dependent decrease of LH-stimulated testosterone production, with an IC50 value of 1.1 X 10(-9) M (as calculated from three separate experiments). The inhibitory effect of FGF was evident 24 h after the initiation of treatment and this effect was reversible 1 day after the cessation of FGF treatment. The inhibition of LH-induced testosterone production by FGF (maximal inhibition greater than 90%) was accompanied by a 12-fold increase in progesterone levels, suggesting that the inhibitory effect of FGF was distal to the step of progesterone formation. FGF also inhibited forskolin (10(-5) M)- and (Bu)2cAMP (5 X 10(-4) M)-stimulated testosterone production. Furthermore, FGF inhibited the conversion of exogenously added androgen precursors (progesterone and 17 alpha-hydroxyprogesterone) to testosterone in LH-stimulated cultures indicating that FGF might inhibit 17 alpha-hydroxylase activity. The concept of a direct testicular action of FGF was further supported by the demonstration of high affinity (Kd: 3.9 X 10(-10) M; n = 3 experiments) and low capacity (46,900 sites per cell) FGF receptors in cultured testis cells. The binding of [125I]FGF was inhibited by basic and acidic FGF but not by several other growth factors. In conclusion, we suggest that FGF binds to testicular cells and inhibits LH-stimulated testosterone production by inhibiting, at least partially, 17 alpha-hydroxylase enzyme activities. Because FGF has been purified from testis extracts, this growth factor may have intratesticular paracrine or autocrine functions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477

Related Publications

B C Fauser, and A Baird, and A J Hsueh
July 1987, Molecular and cellular endocrinology,
B C Fauser, and A Baird, and A J Hsueh
August 1994, The Journal of steroid biochemistry and molecular biology,
B C Fauser, and A Baird, and A J Hsueh
October 1988, Biochemical and biophysical research communications,
B C Fauser, and A Baird, and A J Hsueh
September 1989, Biology of reproduction,
B C Fauser, and A Baird, and A J Hsueh
October 1998, Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology,
B C Fauser, and A Baird, and A J Hsueh
October 2014, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!