Fibroblast growth factor regulates the expression of luteinizing hormone receptors in cultured rat granulosa cells. 1988

F Oury, and J M Darbon
Inserm U 168, Department of Endocrinology, CHU Rangueil, Université Paul Sabatier, Toulouse, France.

We have investigated the effects of bFGF on both the FSH-induced LH receptor expression and cAMP production in cultured rat granulosa cells. Concentrations of pure FGF, from 10(-12) M to 10(-10) M, progressively inhibit the stimulatory actions of FSH with an ED50 of approximately 4 x 10(-12) M for both parameters. Higher FGF concentrations, from 4 x 10(-10) M to 10(-8) M, lead to a gradual reduction of the growth factor inhibitory effect. The effects of FGF are more prominent on the modulation of LH receptors than on the FSH-induced cAMP production. Moreover, FGF impairs the LH receptor formation induced by cholera toxin or 8-Bromo-cAMP, indicating that the growth factor also acts at a step distal to cAMP formation. The inhibitory effect of FGF on LH receptor expression increases during the entire course of granulosa cell differentiation, from 24 to 96 h, and is not due to variations in cell number or viability, but rather to a change in the content of LH receptors with no significant modification of binding affinity (KD congruent to 0.8 x 10(-10) M). These results suggest that bFGF may acutely regulate the capacity of granulosa cells to differentiate upon FSH stimulation and to respond to LH during the ovarian follicular maturation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011966 Receptors, LHRH Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors. GnRH Receptors,Gonadoliberin Receptors,Gonadorelin Receptors,Gonadotropin Releasing-Hormone Receptors,LHFSHRH Receptors,LHRH Receptors,Luliberin Receptors,Receptors, GnRH,Receptors, Gonadoliberin,Receptors, Gonadorelin,Receptors, Luliberin,Follicle Stimulating Hormone-Releasing Hormone Receptors,GnRH Receptor,Gonadorelin Receptor,Gonadotropin-Releasing Hormone Receptor,LHRH Receptor,Luteinizing Hormone Releasing Hormone Receptors,Luteinizing Hormone Releasing-Hormone Receptor,Receptor, LHRH,Receptors, Gonadotropin Releasing-Hormone,Receptors, LHFSHRH,Follicle Stimulating Hormone Releasing Hormone Receptors,Gonadotropin Releasing Hormone Receptor,Gonadotropin Releasing Hormone Receptors,Hormone Receptor, Gonadotropin-Releasing,Luteinizing Hormone Releasing Hormone Receptor,Receptor, GnRH,Receptor, Gonadorelin,Receptor, Gonadotropin-Releasing Hormone,Receptors, Gonadotropin Releasing Hormone,Releasing-Hormone Receptors, Gonadotropin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D005260 Female Females
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015124 8-Bromo Cyclic Adenosine Monophosphate A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase. 8-Bromo-cAMP,8-Br Cyclic AMP,8-Bromo Cyclic AMP,8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8-Bromoadenosine 3',5'-Cyclic Monophosphate,Br Cycl AMP,8 Br Cyclic AMP,8 Bromo Cyclic AMP,8 Bromo Cyclic Adenosine Monophosphate,8 Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8 Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8 Bromo cAMP,8 Bromoadenosine 3',5' Cyclic Monophosphate,AMP, Br Cycl,Cyclic AMP, 8-Br,Cyclic AMP, 8-Bromo

Related Publications

F Oury, and J M Darbon
September 1986, Biochemical and biophysical research communications,
F Oury, and J M Darbon
January 2004, Environmental sciences : an international journal of environmental physiology and toxicology,
Copied contents to your clipboard!