Solubilization of rat lung vasoactive intestinal peptide receptors in the active state. Characterization of the binding properties and comparison with membrane-bound receptors. 1988

S Patthi, and S Simerson, and G Veliçelebi
Salk Institute Biotechnology/Industrial Associates, Inc., La Jolla, California 92037.

We demonstrate here that rat lung membrane vasoactive intestinal peptide (VIP) receptors can be extracted in the active state using digitonin. Sepharose 4B gel filtration chromatography was utilized to demonstrate the formation of specific binding complexes between 125I-VIP and solubilized receptors. A rapid soluble receptor assay was established to separate 125I-VIP-receptor complexes from free 125I-VIP, which entailed differential precipitation of the 125I-VIP-receptor complex with polyethylene glycol and bovine gamma-globulin. Using this assay, several detergents were tested for their suitability to extract active VIP receptors, and most favorable results were obtained with digitonin, as judged by specific binding of 125I-VIP to the solubilized receptors. Time course studies indicated that the binding of 125I-VIP to digitonin extract was more rapid than to rat lung membranes. Scatchard analyses of competitive binding data indicated the presence of two classes of binding sites in the digitonin extract, as in the membrane. The values for the dissociation constants (Kd) were 200 pM for Class I and 8 nM for Class II receptors while the values for binding capacity (Bmax) were 200 and 2300 fmol/mg for Class I and II sites, respectively. Although the binding parameters of the two classes were similar to those in the membrane, the pharmacological properties were different, as evidenced by the inability of rat growth hormone releasing factor, a potent VIP agonist in the membrane, to displace specifically bound 125I-VIP from solubilized receptors. The ability to solubilize active VIP receptors represents an important step toward purification of the functional protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011964 Receptors, Gastrointestinal Hormone Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems. Gastrointestinal Hormone Receptors,Intestinal Hormone Receptors,Receptors, Gastrointestinal Peptides,Gastrointestinal Hormone Receptor,Intestinal Hormone Receptor,Receptors, Gastrointestinal Hormones,Receptors, Intestinal Hormone,Gastrointestinal Hormones Receptors,Gastrointestinal Peptides Receptors,Hormone Receptor, Gastrointestinal,Hormone Receptor, Intestinal,Hormone Receptors, Gastrointestinal,Hormone Receptors, Intestinal,Hormones Receptors, Gastrointestinal,Peptides Receptors, Gastrointestinal,Receptor, Gastrointestinal Hormone,Receptor, Intestinal Hormone
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

S Patthi, and S Simerson, and G Veliçelebi
June 1987, Endocrinology,
S Patthi, and S Simerson, and G Veliçelebi
April 1989, Regulatory peptides,
S Patthi, and S Simerson, and G Veliçelebi
May 1984, Endocrinology,
S Patthi, and S Simerson, and G Veliçelebi
September 1992, The Journal of biological chemistry,
S Patthi, and S Simerson, and G Veliçelebi
January 1986, Peptides,
S Patthi, and S Simerson, and G Veliçelebi
February 1991, The American journal of physiology,
S Patthi, and S Simerson, and G Veliçelebi
January 1987, The Journal of biological chemistry,
S Patthi, and S Simerson, and G Veliçelebi
September 1994, The American journal of physiology,
S Patthi, and S Simerson, and G Veliçelebi
March 2000, Peptides,
Copied contents to your clipboard!