Human immunodeficiency virus type 2 long terminal repeat: analysis of regulatory elements. 1988

S K Arya, and R C Gallo
Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, MD 20892.

The long terminal repeats (LTRs) of the human immunodeficiency virus type 2 (HIV-2) and a related simian immunodeficiency virus (SIVmac) contain cis-acting positive regulatory elements upstream and the major transactivator gene (tat) response element and a possible negative regulatory element downstream of the transcriptional initiation site. The tat response element of HIV-2 and of SIVmac was more complex than that of HIV-1. Two structurally similar subelements within the HIV-2 tat response element could be identified. Both of these subelements were required for optimal transactivation by the HIV-2 tat gene product. Either of these subelements, however, was sufficient for transactivation by the HIV-1 tat gene product. These observations provide an explanation for the poor transactivation of HIV-1 LTR-directed gene expression by the HIV-2 tat gene product since the HIV-1 LTR contains an analog of only one of the HIV-2 subelements. The HIV-2 tat gene product also affected the function of the upstream elements, including enhancer activity. The response of these cis elements of HIV-2 to transactivation by HIV-2/SIVmac and HIV-1 tat gene differed somewhat in virus-infected and tat gene transfected cells, probably related to the differences in the effective concentration of the tat gene products and/or other viral or cellular factors. The steady-state levels of HIV-2 LTR-linked gene transcripts were much higher in the presence of HIV-2, SIVmac, and HIV-1 tat genes than in their absence, suggesting transcriptional modulation as a mechanism for tat gene function.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

S K Arya, and R C Gallo
September 1994, The Journal of general virology,
Copied contents to your clipboard!