Free radical formation by cytotoxic alkylaminoanthraquinones in liver microsomes. 1988

L H Patterson, and J Basra, and J R Brown
Department of Pharmaceutical Chemistry, School of Pharmacy, Leicester Polytechnic, UK.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000880 Anthraquinones Compounds based on ANTHRACENES which contain two KETONES in any position. Substitutions can be in any position except on the ketone groups. Anthracenedione,Anthracenediones,Anthranoid,Anthraquinone,Anthraquinone Compound,Anthraquinone Derivative,Dianthraquinones,Dianthrones,Anthranoids,Anthraquinone Compounds,Anthraquinone Derivatives,Compound, Anthraquinone,Derivative, Anthraquinone
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

L H Patterson, and J Basra, and J R Brown
January 1986, Proceedings of the Chinese Academy of Medical Sciences and the Peking Union Medical College = Chung-kuo i hsueh k'o hsueh yuan, Chung-kuo hsieh ho i k'o ta hsueh hsueh pao,
L H Patterson, and J Basra, and J R Brown
January 1987, Free radical research communications,
L H Patterson, and J Basra, and J R Brown
April 1977, Biochemical pharmacology,
L H Patterson, and J Basra, and J R Brown
February 1983, Toxicology letters,
L H Patterson, and J Basra, and J R Brown
August 2012, Xenobiotica; the fate of foreign compounds in biological systems,
L H Patterson, and J Basra, and J R Brown
January 1984, Biochemical and biophysical research communications,
L H Patterson, and J Basra, and J R Brown
January 1971, Xenobiotica; the fate of foreign compounds in biological systems,
L H Patterson, and J Basra, and J R Brown
October 1979, Journal of steroid biochemistry,
L H Patterson, and J Basra, and J R Brown
January 1994, Free radical research,
L H Patterson, and J Basra, and J R Brown
May 2005, Journal of biochemical and biophysical methods,
Copied contents to your clipboard!