| D010957 |
Plasmids |
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. |
Episomes,Episome,Plasmid |
|
| D004251 |
DNA Transposable Elements |
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. |
DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D001105 |
Archaea |
One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. |
Archaebacteria,Archaeobacteria,Archaeon,Archebacteria |
|
| D001419 |
Bacteria |
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. |
Eubacteria |
|
| D001435 |
Bacteriophages |
Viruses whose hosts are bacterial cells. |
Phages,Bacteriophage,Phage |
|
| D014774 |
Virulence |
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. |
Pathogenicity |
|
| D024901 |
Drug Resistance, Multiple, Bacterial |
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). |
Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug |
|
| D064112 |
Clustered Regularly Interspaced Short Palindromic Repeats |
Repetitive nucleic acid sequences that are principal components of the archaeal and bacterial CRISPR-CAS SYSTEMS, which function as adaptive antiviral defense systems. |
CRISPR Arrays,CRISPR Clusters,CRISPR Elements,CRISPR Loci,CRISPR Locus,CRISPR Sequences,CRISPR Spacer Sequences,CRISPR Spacers,CRISPR-Cas Loci,CRISPRs,Clustered Regularly Interspaced Short Palindromic Repeat,Array, CRISPR,Arrays, CRISPR,CRISPR,CRISPR Array,CRISPR Cas Loci,CRISPR Cluster,CRISPR Element,CRISPR Sequence,CRISPR Spacer,CRISPR Spacer Sequence,CRISPR-Cas Locus,Cluster, CRISPR,Clusters, CRISPR,Element, CRISPR,Elements, CRISPR,Loci, CRISPR,Loci, CRISPR-Cas,Locus, CRISPR,Locus, CRISPR-Cas,Sequence, CRISPR,Sequence, CRISPR Spacer,Sequences, CRISPR,Sequences, CRISPR Spacer,Spacer Sequence, CRISPR,Spacer Sequences, CRISPR,Spacer, CRISPR,Spacers, CRISPR |
|
| D064113 |
CRISPR-Cas Systems |
Adaptive antiviral defense mechanisms, in archaea and bacteria, based on DNA repeat arrays called CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS (CRISPR elements) that function in conjunction with CRISPR-ASSOCIATED PROTEINS (Cas proteins). Several types have been distinguished, including Type I, Type II, and Type III, based on signature motifs of CRISPR-ASSOCIATED PROTEINS. |
CRISPR Cas Systems,CRISPR-Cas System,System, CRISPR-Cas,Systems, CRISPR-Cas |
|