Mechanism of oxmetidine (SK&F 92994) cytotoxicity in isolated rat hepatocytes. 1985

G F Rush, and M Ripple, and R Chenery

Oxmetidine is an H2-receptor antagonist that has efficacy in the treatment of peptic ulcers. Isolated rat hepatocytes exposed to oxmetidine (0.5 mM) rapidly lost viability as estimated by increased leakage of lactate dehydrogenase, increased formation of plasma membrane surface blebs and decreased intracellular potassium concentration [K+]. Oxmetidine caused a reduction in hepatocyte reduced glutathione concentration that paralleled cell death; malondialdehyde formation was not observed. Hepatocyte respiration (O2 consumption) and intracellular ATP concentration were decreased markedly by oxmetidine in a concentration-related fashion. Oxmetidine (50 microM) blocked pyruvate/malate-supported state 3 (ADP-stimulated) respiration, caused a decrease in the ADP:0 ratio and a loss of respiratory control in isolated rat liver mitochondria. In contrast, oxmetidine did not block succinate-supported ADP-stimulated O2 consumption in isolated rat liver mitochondria. These data demonstrate that: 1) oxmetidine was cytotoxic to isolated rat hepatocytes in suspension and 2) the mechanism of oxmetidine-induced hepatocyte injury may be related to sustained inhibition of mitochondrial oxidative phosphorylation leading to decreased cellular ATP content and cell death. Although the exact site of action of oxmetidine within the mitochondrion has not been completely elucidated, it appears to reside in the inner mitochondrial membrane electron transport chain before ubiquinone oxidoreductase.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006635 Histamine H2 Antagonists Drugs that selectively bind to but do not activate histamine H2 receptors, thereby blocking the actions of histamine. Their clinically most important action is the inhibition of acid secretion in the treatment of gastrointestinal ulcers. Smooth muscle may also be affected. Some drugs in this class have strong effects in the central nervous system, but these actions are not well understood. Antihistaminics, H2,H2 Receptor Blockader,Histamine H2 Antagonist,Histamine H2 Blocker,Histamine H2 Receptor Antagonist,Histamine H2 Receptor Antagonists,Histamine H2 Receptor Blockader,Histamine H2 Receptor Blockaders,Antagonists, Histamine H2,Blockaders, Histamine H2 Receptor,H2 Receptor Blockaders,Histamine H2 Blockers,Receptor Antagonists, Histamine H2,Receptor Blockaders, H2,Antagonist, Histamine H2,Blockader, H2 Receptor,Blockaders, H2 Receptor,Blocker, Histamine H2,Blockers, Histamine H2,H2 Antagonist, Histamine,H2 Antagonists, Histamine,H2 Antihistaminics,H2 Blocker, Histamine,H2 Blockers, Histamine,Receptor Blockader, H2

Related Publications

G F Rush, and M Ripple, and R Chenery
June 1988, Journal of applied toxicology : JAT,
G F Rush, and M Ripple, and R Chenery
August 2008, Chemico-biological interactions,
G F Rush, and M Ripple, and R Chenery
January 2014, Canadian journal of physiology and pharmacology,
G F Rush, and M Ripple, and R Chenery
January 2007, Journal of applied toxicology : JAT,
G F Rush, and M Ripple, and R Chenery
October 1989, Cancer research,
G F Rush, and M Ripple, and R Chenery
November 1998, Chemico-biological interactions,
G F Rush, and M Ripple, and R Chenery
January 1985, International journal of clinical pharmacology research,
G F Rush, and M Ripple, and R Chenery
October 2013, Drug and chemical toxicology,
G F Rush, and M Ripple, and R Chenery
January 1992, Biochemical pharmacology,
Copied contents to your clipboard!