Modulation by prostaglandin D2 of mitral cell responses to odor stimulation in rabbit olfactory bulb. 1986

Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi

Recent work in our laboratory has demonstrated that prostaglandin (PG) D2 and the enzyme activities for its biosynthesis and inactivation are highly concentrated in the olfactory bulb and that the mitral cell layer of the bulb is enriched with PGD2-binding protein. We therefore investigated the role of PGD2 in the processing of odor signals in the rabbit olfactory bulb by an electrophysiological technique. Iontophoretic (-100 nA, 20 s), intra-arterial (0.0125-0.1 mg/kg) and intravenous (i.v., 0.05-0.3 mg/kg) administration of PGD2 enhanced and prolonged the responses of mitral cells to some of the olfactory stimuli tested. The extent and duration of granule cell inhibition of mitral cells were assessed by recording field potential responses in the bulb to paired lateral olfactory tract volleys. The i.v. administration of indomethacin or diclophenac, both of which are inhibitors of PG biosynthesis, resulted in prolongation of the granule cell inhibition of mitral cells without any significant change of the conditioning amplitudes. It also caused the reduction of the spike responses of mitral cells to olfactory stimuli. After treatment with indomethacin, the i.v. administration of PGD2 (1 mg/kg) rapidly reduced the duration of the granule cell inhibition of mitral cells. These results indicate that PGD2 plays a modulatory role in the mitral cell responses to odor stimuli by suppressing the inhibitory synaptic inputs from granule cells to mitral cells.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D011457 Prostaglandins D Physiologically active prostaglandins found in many tissues and organs. They show pressor activity, are mediators of inflammation, and have potential antithrombotic effects. PGD
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012903 Smell The ability to detect scents or odors, such as the function of OLFACTORY RECEPTOR NEURONS. Olfaction,Sense of Smell,Smell Sense
D015230 Prostaglandin D2 The principal cyclooxygenase metabolite of arachidonic acid. It is released upon activation of mast cells and is also synthesized by alveolar macrophages. Among its many biological actions, the most important are its bronchoconstrictor, platelet-activating-factor-inhibitory, and cytotoxic effects. 11-Dehydroprostaglandin F2alpha,PGD2,11-Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2alpha,D2, Prostaglandin,F2 alpha, 11-Dehydroprostaglandin,F2alpha, 11-Dehydroprostaglandin,alpha, 11-Dehydroprostaglandin F2
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
May 1979, Brain research,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
November 1982, Comptes rendus des seances de l'Academie des sciences. Serie III, Sciences de la vie,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
January 2012, Frontiers in systems neuroscience,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
May 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
January 1972, Brain research,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
September 2021, iScience,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
November 1993, Journal of neurophysiology,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
December 1992, Journal of neurophysiology,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
October 1988, Behavioral neuroscience,
Y Watanabe, and K Mori, and K Imamura, and S F Takagi, and O Hayaishi
September 1990, Journal of neurophysiology,
Copied contents to your clipboard!