Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. 1993

K Katoh, and H Koshimoto, and A Tani, and K Mori
Department of Neuroscience, Osaka Bioscience Institute, Japan.

1. Recordings of extracellular spike responses were made from single mitral/tufted cells in the ventromedial region of the main olfactory bulb of urethan-chloralose-anesthetized rabbits. Using periodic artificial inhalations, the olfactory epithelium was stimulated with series of aromatic and aliphatic compounds systematically varying in molecular conformation. 2. Analysis of response specificity of single mitral/tufted cells for alkylbenzenes indicated that the length of the hydrocarbon side chain attached to the benzene ring plays a role in determining the specificity of excitatory spike responses. 3. For a panel of isomeric (ortho-, meta-, and para-positions) disubstituted benzenes, single mitral/tufted cells tended to be activated selectively by one or two specific structural isomer(s). For a panel that contained both alkylbenzenes and disubstituted benzenes, single mitral/tufted cells were activated by subsets of odor molecules having similar conformations. These observations suggest that the overall conformation of the aromatic compounds plays an important role in determining tuning specificity of individual mitral/tufted cells. 4. For a panel of monosubstituted benzenes with various functional groups, single mitral/tufted cells in the ventromedial region tended to be activated not only by molecules having a hydrocarbon side chain (alkylbenzenes), but also by those having a methoxy group (--O--CH3), a bromine (--Br), or a chlorine (--Cl). However, most of the neurons were not activated by those having an amino group (--NH2), a hydroxy group (--OH), nor a carboxyl group (--COOH). 5. Examination with an expanded panel of stimulus odor molecules that included both aromatic and aliphatic compounds indicated that single mitral/tufted cells show excitatory spike responses to a range of odor molecules (molecular receptive range) having similar conformations. Different mitral/tufted cells in the ventromedial region typically showed different molecular receptive ranges. 6. In mitral/tufted cells with relatively high spontaneous discharges, single neurons in the ventromedial region showed inhibitory responses to subsets of odor molecules in addition to the excitatory response to other subsets of odor molecules. The odor molecules that caused inhibitory responses in single mitral/tufted cells showed molecular conformations resembling each other. 7. The present results together with previous studies indicate that determination of the molecular receptive range properties (both excitatory extent and inhibitory extent) of single mitral/tufted cells is a useful method for characterizing individual bulbar neurons. These results further support the hypothesis that conformational parameters of ligand odor molecules play a key role in sensory processing in the main olfactory bulb.

UI MeSH Term Description Entries
D008297 Male Males
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001555 Benzene Derivatives Organic compounds derived from BENZENE. Derivatives, Benzene

Related Publications

K Katoh, and H Koshimoto, and A Tani, and K Mori
December 1992, Journal of neurophysiology,
K Katoh, and H Koshimoto, and A Tani, and K Mori
February 2009, Proceedings of the National Academy of Sciences of the United States of America,
K Katoh, and H Koshimoto, and A Tani, and K Mori
February 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Katoh, and H Koshimoto, and A Tani, and K Mori
May 2018, Scientific reports,
K Katoh, and H Koshimoto, and A Tani, and K Mori
January 2005, Neuroscience,
K Katoh, and H Koshimoto, and A Tani, and K Mori
November 1996, Experimental brain research,
K Katoh, and H Koshimoto, and A Tani, and K Mori
January 2014, PloS one,
K Katoh, and H Koshimoto, and A Tani, and K Mori
January 2012, Frontiers in systems neuroscience,
K Katoh, and H Koshimoto, and A Tani, and K Mori
September 1983, The Journal of comparative neurology,
K Katoh, and H Koshimoto, and A Tani, and K Mori
February 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!