Distribution of dynorphin and enkephalin peptides in the rat brain. 1986

J H Fallon, and F M Leslie

The neuroanatomical distribution of dynorphin B-like immunoreactivity (DYN-B) was studied in the adult male and female albino rat. The distribution of DYN B in colchicine- and noncolchicine-treated animals was also compared to that of another opioid peptide derived from the prodynorphin precursor dynorphin A (1-8) (DYN 1-8), and an opioid peptide derived from the proenkephalin precursor met-enkephalin-arg-gly-leu (MERGL). DYN B cell bodies were present in nonpyramidal cells of neo- and allocortices, medium-sized cells of the caudate-putamen, nucleus accumbens, lateral part of the central nucleus of the amygdala, bed nucleus of the stria terminalis, preoptic area, and in sectors of nearly every hypothalamic nucleus and area, medial pretectal area, and nucleus of the optic tract, periaqueductal gray, raphe nuclei, cuneiform nucleus, sagulum, retrorubral nucleus, peripeduncular nucleus, lateral terminal nucleus, pedunculopontine nucleus, mesencephalic trigeminal nucleus, parabigeminal nucleus, dorsal nucleus of the lateral lemniscus, lateral superior olivary nucleus, superior paraolivary nucleus, medial superior olivary nucleus, ventral nucleus of the trapezoid body, lateral dorsal tegmental nucleus, accessory trigeminal nucleus, solitary nucleus, nucleus ambiguus, paratrigeminal nucleus, area postrema, lateral reticular nucleus, and ventrolateral region of the reticular formation. Fiber systems are present that conform to many of the known output systems of these nuclei, including major descending pathways (e.g., striatonigral, striatopallidal, reticulospinal, hypothalamospinal pathways), short projection systems (e.g., mossy fibers in hippocampus, hypothalamo-hypophyseal pathways), and local circuit pathways (e.g., in cortex, hypothalamus). The distribution of MERGL was, with a few notable exceptions, in the same nuclei as DYN B. From these neuroanatomical data, it appears that the dynorphin and enkephalin peptides are strategically located in brain regions that regulate extrapyramidal motor function, cardiovascular and water balance systems, eating, sensory processing, and pain perception.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin

Related Publications

J H Fallon, and F M Leslie
December 1982, Science (New York, N.Y.),
J H Fallon, and F M Leslie
November 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J H Fallon, and F M Leslie
June 1980, Neuroscience letters,
J H Fallon, and F M Leslie
April 1977, Neuropharmacology,
Copied contents to your clipboard!