Separate cell types that express two different forms of somatostatin in anglerfish islets can be immunohistochemically differentiated. 1987

J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe

The somatostatin-related peptides somatostatin-14 (SS-14) and somatostatin-28 (aSS-28) are synthesized at the C-terminal end of two separate pre-pro-somatostatins in anglerfish pancreatic islets. The purpose of this study was to determine whether these peptides are expressed in the same or different cell types. Antisera R141 and R293, which recognize the central region of SS-14 and the C-terminal region of aSS-28 ([Tyr7,Gly10] SS-14), respectively, were used in an immunohistochemical examination of anglerfish islets. The R293 antiserum-labeled cells were distributed individually or in small clusters. These same cells, as well as a separate set of cells arranged in large clusters, were stained by the R141 antiserum. Pre-absorption of the R141 antiserum with [Tyr7,Gly10] SS-14 eliminated staining by R141 of only those cells also labeled by R293, whereas pre-absorption of R141 with SS-14 prevented all staining. Pre-absorption of R293 with [Tyr7,Gly10] SS-14 eliminated all staining, whereas pre-absorption with SS-14 had no effect on aSS-28-like immunoreactivity. These results suggest the existence of two separate cell types which express either SS-14 or aSS-28. The cells that contained the somatostatin-related peptides were found to be distinct from those cells that contained insulin, glucagon, or anglerfish peptide Y. However, the cells stained by the R293 antiserum were distributed in close association with glucagon-containing cells. The implications of the existence of separate cell types which express SS-14 or aSS-28 are discussed with regard to processing of the biosynthetic precursors to these peptides.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D011498 Protein Precursors Precursors, Protein
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D053561 Somatostatin-28 A 28-amino acid peptide with the same biological activities of somatostatin-14 but with a 14-amino acid extension at the N-terminal. SRIF-28 is the major form of somatostatin in the GASTROINTESTINAL TRACT. Somatostatin 28

Related Publications

J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
January 1985, Advances in experimental medicine and biology,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
January 1982, Activitas nervosa superior,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
April 1985, Science (New York, N.Y.),
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
January 1995, The Journal of comparative neurology,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
August 2014, BMC veterinary research,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
August 2001, Life sciences,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
February 1970, Nature,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
May 1988, The EMBO journal,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
January 1992, Oncogene,
J K McDonald, and F Greiner, and G E Bauer, and R P Elde, and B D Noe
October 1991, European journal of immunology,
Copied contents to your clipboard!