Multiple Cl(-)-independent binding sites for the excitatory amino acids: glutamate, aspartate and cysteine sulfinate in rat brain membranes. 1987

J P Pin, and J F Rumigny, and J Bockaert, and M Recasens

As we have recently reported that Cl(-)-dependent glutamate (GLU) binding reflects GLU accumulation into membrane vesicles, the characteristics, kinetics and pharmacological specificities of L-[3H]glutamate (L-[3H]GLU) binding to crude rat brain synaptic membranes, were investigated in Cl(-)-free medium. L-[3H]GLU binding was systematically compared to that of L-[3H]cysteine sulfinate (L-[3H]CSA) and L-[3H]ASP), two other putative excitatory amino acids. A high affinity site was determined for each of these radioactive ligands (L-[3H]GLU: Kd = 0.14 microM, Bm = 3.4 pmol/mg protein; L-[3H]CSA: Kd = 0.07 microM, Bm = 2.2 pmol/mg protein; L-[3H]ASP: Kd = 5.8 microM, Bm = 31.2 pmol/mg protein). The pharmacological specificity of these Cl(-)-independent binding sites indicate the existence of at least 3 distinct high affinity sites, all different from the Cl(-)-dependent GLU binding 'site': one having a similar affinity for GLU and CSA, a second one preferring CSA, and a third one preferring ASP. Among the large quantity of structural analogs of the neuroexcitatory amino acids tested, only endogenous compounds (GLU, ASP and CSA) (except hydroxylamine-o-sulfate) were able to interact efficiently. No inhibition by classical agonists and antagonists (such as N-methyl-D-aspartate, quisqualate, kainate, 2-amino-4-phosphonobutyrate, or 2-amino-5-phosphonovalerate) was found. In addition to their high specificity, these Cl(-)-independent sites possess most other biochemical characteristics of receptor proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
January 1983, Neurochemistry international,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
January 1984, Nature,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
January 1984, Journal of neuroscience research,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
April 2014, Neurochemistry international,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
December 1981, Brain research,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
April 1996, Neurochemistry international,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
June 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J P Pin, and J F Rumigny, and J Bockaert, and M Recasens
June 1990, Brain research,
Copied contents to your clipboard!