Purification Protocols for Extracellular Vesicles. 2017

Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr Cooper and College Road, St. Lucia, Brisbane, QLD, 4072, Australia.

This chapter provides a description of some of the standard methods used for the isolation of extracellular vesicles (EVs) from a variety of biological fluids, including cell culture media, urine, plasma and serum. The methods presented include ultracentrifugation, ultrafiltration, proprietary polymer-based reagents, size exclusion chromatography, density gradient separation, and immunoaffinity capture. Ultracentrifugation methods use high speed centrifugation to pellet vesicles, whilst polymer-based reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration involves the concentration of vesicles from a large volume of biological fluid using a centrifugal filter unit. Size exclusion chromatography and density gradient separation are both designed to allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest. Ultimately, the choice of purification method for an individual experiment is influenced by time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

UI MeSH Term Description Entries
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067128 Extracellular Vesicles Membrane limited structures derived from cell membranes and cytoplasmic material, and released into EXTRACELLULAR SPACE. They circulate through the EXTRACELLULAR FLUID and through the peripheral blood in the MICROVASCULATURE where cells, much larger, cannot, thereby affecting a variety of intercellular communication processes. Apoptotic Bodies,Exovesicles,Apoptotic Body,Bodies, Apoptotic,Body, Apoptotic,Exovesicle,Extracellular Vesicle,Vesicle, Extracellular,Vesicles, Extracellular
D014461 Ultracentrifugation Centrifugation with a centrifuge that develops centrifugal fields of more than 100,000 times gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D014462 Ultrafiltration The separation of particles from a suspension by passage through a filter with very fine pores. In ultrafiltration the separation is accomplished by convective transport; in DIALYSIS separation relies instead upon differential diffusion. Ultrafiltration occurs naturally and is a laboratory procedure. Artificial ultrafiltration of the blood is referred to as HEMOFILTRATION or HEMODIAFILTRATION (if combined with HEMODIALYSIS).
D018189 Immunomagnetic Separation A cell-separation technique where magnetizable microspheres or beads are first coated with monoclonal antibody, allowed to search and bind to target cells, and are then selectively removed when passed through a magnetic field. Among other applications, the technique is commonly used to remove tumor cells from the marrow (BONE MARROW PURGING) of patients who are to undergo autologous bone marrow transplantation. Immunomagnetic Bead Technique,Immunomagnetic Purging,Immunomagnetic Cell Separation,Bead Technique, Immunomagnetic,Bead Techniques, Immunomagnetic,Cell Separation, Immunomagnetic,Cell Separations, Immunomagnetic,Immunomagnetic Bead Techniques,Immunomagnetic Cell Separations,Immunomagnetic Purgings,Immunomagnetic Separations,Purging, Immunomagnetic,Purgings, Immunomagnetic,Separation, Immunomagnetic,Separation, Immunomagnetic Cell,Separations, Immunomagnetic,Separations, Immunomagnetic Cell

Related Publications

Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
January 2018, Methods in molecular biology (Clifton, N.J.),
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
March 2023, Analytical and bioanalytical chemistry,
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
May 2015, Scientific reports,
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
January 2017, Methods in molecular biology (Clifton, N.J.),
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
August 2017, BioTechniques,
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
January 2024, Frontiers in immunology,
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
October 2019, SLAS technology,
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
January 2016, Frontiers in oncology,
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
January 2023, Methods in molecular biology (Clifton, N.J.),
Rebecca E Lane, and Darren Korbie, and Matt Trau, and Michelle M Hill
March 2020, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!