Essentiality of Glu-48 of ribulose bisphosphate carboxylase/oxygenase as demonstrated by site-directed mutagenesis. 1987

F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper

Previous reports provide indirect evidence for the presence of Glu-48 at the active site of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. This possibility has been examined directly by replacement of Glu-48 with glutamine via site-directed mutagenesis. This single amino acid substitution does not prevent subunit association or ligand binding. However, the Glu-48 mutant is severely deficient in catalytic activity, exhibiting a kcat only 0.05% that of wild-type enzyme. These results demonstrate that Glu-48 is positioned at the active site and suggest that it serves a functional role. In conjunction with previous studies, the discovery of essentiality of Glu-48 argues that the active site is located at an interface between subunits.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012247 Rhodospirillum rubrum Vibrio- to spiral-shaped phototrophic bacteria found in stagnant water and mud exposed to light.
D012273 Ribulose-Bisphosphate Carboxylase A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration. Carboxydismutase,Ribulose Biphosphate Carboxylase-Oxygenase,Ribulose Diphosphate Carboxylase,Ribulosebiphosphate Carboxylase,Rubisco,1,5-Biphosphate Carboxylase-Oxygenase,Ribulose Biphosphate Carboxylase,Ribulose Bisphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase-Oxygenase,Ribulose-1,5-Bisphosphate Carboxylase Small-Subunit,Ribulose-Bisphosphate Carboxylase Large Subunit,Ribulose-Bisphosphate Carboxylase Small Subunit,Rubisco Small Subunit,1,5 Biphosphate Carboxylase Oxygenase,Biphosphate Carboxylase-Oxygenase, Ribulose,Carboxylase Small-Subunit, Ribulose-1,5-Bisphosphate,Carboxylase, Ribulose Bisphosphate,Carboxylase, Ribulose Diphosphate,Carboxylase, Ribulose-1,5-Biphosphate,Carboxylase, Ribulose-Bisphosphate,Carboxylase, Ribulosebiphosphate,Carboxylase-Oxygenase, 1,5-Biphosphate,Carboxylase-Oxygenase, Ribulose Biphosphate,Carboxylase-Oxygenase, Ribulose-1,5-Biphosphate,Diphosphate Carboxylase, Ribulose,Ribulose 1,5 Biphosphate Carboxylase,Ribulose 1,5 Biphosphate Carboxylase Oxygenase,Ribulose 1,5 Bisphosphate Carboxylase Small Subunit,Ribulose Biphosphate Carboxylase Oxygenase,Ribulose Bisphosphate Carboxylase Large Subunit,Ribulose Bisphosphate Carboxylase Small Subunit,Small Subunit, Rubisco,Small-Subunit, Ribulose-1,5-Bisphosphate Carboxylase
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
July 1992, Plant physiology,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
August 1994, Photosynthesis research,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
April 1990, The Journal of biological chemistry,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
March 1987, European journal of biochemistry,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
October 1988, Photosynthesis research,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
January 1978, Basic life sciences,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
May 1995, The Journal of biological chemistry,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
December 1993, The Journal of biological chemistry,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
January 1983, Annual review of biochemistry,
F C Hartman, and F W Larimer, and R J Mural, and R Machanoff, and T S Soper
April 1992, The Journal of biological chemistry,
Copied contents to your clipboard!