Major localization of aminopeptidase M in rat brain microvessels. 1987

B Solhonne, and C Gros, and H Pollard, and J C Schwartz

The localization of two enkephalin-hydrolysing aminopeptidases i.e. aminopeptidase M (aminopeptidase N, EC 3.4.11.2) relatively insensitive to puromycin (Ki = 78 microM), and a puromycin-sensitive aminopeptidase (Ki = 1 microM) was studied in rat brain. The two aminopeptidases were differentially identified and/or localized using polyclonal anti-aminopeptidase M antibodies displaying anticatalytic activity and the inhibitors puromycin, bestatin and amastatin. Microvessels represent a major localization of cerebral aminopeptidase M as shown by the intense immunostaining of their walls in sections from various regions as well as in a fraction isolated from cerebral cortex homogenates by a sieving procedure. As compared to the starting homogenate, aminopeptidase M activity was enriched about twenty fold in this microvascular fraction. Aminopeptidase M was identified in this fraction by comparing the inhibitory potencies of antibodies and peptidase inhibitors towards the hydrolysis of [tyrosyl-3,5-3H, Met5]enkephalin to those found for the purified enzyme. A rather high aminopeptidase M activity was also localized in choroid plexuses. Following differential and gradient centrifugation analysis of cerebral cortex homogenates, aminopeptidase M activity was also enriched (by five to six fold) in fractions containing synaptic membranes. No significant soluble aminopeptidase M activity could be detected. These data suggest a dual localization of cerebral aminopeptidase M in microvessels and synaptic membranes consistent with its roles in preventing the access of circulating peptides to brain as well as in inactivating neuropeptides released from cerebral neurones. In comparison, puromycin-sensitive aminopeptidase activity, which is about 100 fold higher than aminopeptidase M activity in brain, was relatively low in microvessels and non-detectable in fractions enriched in synaptic membranes, being almost entirely restricted to soluble fractions.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane

Related Publications

B Solhonne, and C Gros, and H Pollard, and J C Schwartz
March 1993, Brain research,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
February 1985, Neuropeptides,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
January 1992, Life sciences,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
January 1981, Journal of neurochemistry,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
June 1992, Gastroenterology,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
March 1993, Journal of cell science,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
July 1990, Brain research,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
August 1990, Journal of neurochemistry,
B Solhonne, and C Gros, and H Pollard, and J C Schwartz
October 1994, The American journal of physiology,
Copied contents to your clipboard!