Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. 1987

R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
Laboratory of Molecular Embryology, National Institute for Medical Research, Mill Hill, London, UK.

The Hox 2.1 gene forms part of a cluster of homeobox-containing genes on mouse chromosome 11. Analysis of Hox 2.1 cDNAs isolated from an 8 1/2-day p.c. mouse embryo library predicts that the gene encodes a 269 amino acid protein (Mr, 29,432). This deduced protein contains a homeobox 15 amino acids from the carboxy terminus and is very rich in serine and proline. A second partially conserved region present in several other genes containing homeoboxes, the hexapeptide Ile-Phe-Pro-Trp-Met-Arg, is located 12 amino acids upstream of the homeodomain and is encoded by a separate exon. Analysis of Hox 2.1 gene expression reveals a complex and tissue-specific series of RNA transcripts in a broad range of fetal tissues (lung, spinal cord, kidney, gut, spleen, liver and visceral yolk sac). Comparison of the temporal patterns of gene expression during development and in the adult suggests that Hox 2.1 is regulated independently in different tissues. Evidence is also presented that transcripts from other loci have extensive homology to the Hox 2.1 gene in sequences outside of the homeobox. In situ hybridization shows that Hox 2.1 transcripts are regionally localized in the spinal cord in an apparent anterior-posterior gradient extending from the hind brain. The distribution of RNA also displays a cell-type specificity in the lung, where mesodermal cells surrounding the branching epithelial cell layer accumulate high levels of Hox 2.1 transcripts.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
November 1988, Cell differentiation and development : the official journal of the International Society of Developmental Biologists,
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
January 1988, Development (Cambridge, England),
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
June 1990, Development (Cambridge, England),
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
January 1988, Development (Cambridge, England),
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
December 1988, Biochemical and biophysical research communications,
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
November 1990, Development (Cambridge, England),
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
May 1992, Mechanisms of development,
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
May 1988, The EMBO journal,
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
April 1991, Nature,
R Krumlauf, and P W Holland, and J H McVey, and B L Hogan
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!