Expression of homeobox gene Hox 1.1 during mouse embryogenesis. 1988

K A Mahon, and H Westphal, and P Gruss
Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892.

Many of the genes controlling segmentation and pattern formation in Drosophila contain a conserved 183 bp sequence known as the homeobox. Homeobox sequences have been found in a range of metazoan species, including the vertebrates mouse and man. This striking conservation suggests that homeobox genes may play a fundamental role in developmental processes. If this is the case then it might be expected that vertebrate homeobox genes will be differentially expressed during embryogenesis and that the timing of their expression will coincide with major morphogenetic events. Here the spatial and temporal patterns of expression of murine homeobox genes will be explored, concentrating on the Hox 1.1 gene as an example. Using in situ hybridization to localize RNA transcripts, it has been found that Hox 1.1 is expressed in a region-specific manner during the formation and differentiation of the embryonic anteroposterior axis. Although striking patterns of expression of Hox 1.1 and other homeobox genes are seen in overtly segmented structures of the embryo (i.e. somites, prevertebral elements, neural tube and dorsal spinal ganglia) expression is also seen in tissues with no obvious segmental origin. The results suggest that homeobox genes probably do not play an exclusive role in segmentation in vertebrates, but are consistent with a role in the assignment of positional identity along the axis of the embryo.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K A Mahon, and H Westphal, and P Gruss
November 1988, Cell differentiation and development : the official journal of the International Society of Developmental Biologists,
K A Mahon, and H Westphal, and P Gruss
January 1989, The EMBO journal,
K A Mahon, and H Westphal, and P Gruss
January 1988, Development (Cambridge, England),
K A Mahon, and H Westphal, and P Gruss
October 1998, Proceedings of the National Academy of Sciences of the United States of America,
K A Mahon, and H Westphal, and P Gruss
January 1988, Current topics in microbiology and immunology,
K A Mahon, and H Westphal, and P Gruss
April 1987, Development (Cambridge, England),
K A Mahon, and H Westphal, and P Gruss
November 1987, Developmental biology,
K A Mahon, and H Westphal, and P Gruss
November 1990, Development (Cambridge, England),
K A Mahon, and H Westphal, and P Gruss
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!