Phorbol ester-induced modulation of agonist binding to alpha-1 adrenergic receptors in bovine aortic membranes. 1988

G Jagadeesh, and R C Deth
Section of Pharmacology, College of Pharmacy and Allied Health Professions, Northeastern University, Boston, Massachusetts.

Effects of the protein kinase C-activating phorbol ester, phorbol dibutyrate (PDBu) on the binding behavior of the alpha-1 adrenergic receptor were determined from radioligand binding assays at 25 and 2 degrees C. Membranes prepared from PDBu-treated bovine aorta exhibited a 16% reduction in [3H]prazosin binding capacity, whereas [3H]prazosin affinity was unchanged. This may reflect a role for protein kinase C-mediated receptor phosphorylation in determining receptor turnover and surface density. After PDBu treatment, the affinity of epinephrine for [3H]prazosin sites was altered in two respects. Control membranes exhibited both high and low affinity epinephrine binding (KDH, 20 nM; KDL, 1086 nM) whereas, PDBu-treated membranes exhibited only a single class of low affinity sites (KDL, 655 nM). The inclusion of 5'-guanylylimidodiphosphate caused the loss of high affinity sites in control membranes but had no effect on PDBu-treated membranes (KDL, 681 nM). Thus, protein kinase C blocks the ability of the agonist-receptor complex to couple to a GTP binding regulatory protein. In binding studies conducted at 2 degrees C epinephrine also bound to high (KDH, 34 nM) and low affinity (KDL, 1920 nM) sites although the percentage of high affinity sites was higher (percentage of RH, 80) than at 25 degrees C (percentage of RH, 19). PDBu-treated membranes also exhibited two agonist affinity states in 2 degrees C studies although affinity was slightly reduced (KDH, 74 nM; KDL, 2405 nM). 5'-Guanylylimidodiphosphate was without effect at 2 degrees C. These results indicate that a high affinity agonist binding state can still be achieved after PDBu treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D015240 Phorbol 12,13-Dibutyrate A phorbol ester found in CROTON OIL which, in addition to being a potent skin tumor promoter, is also an effective activator of calcium-activated, phospholipid-dependent protein kinase (protein kinase C). Due to its activation of this enzyme, phorbol 12,13-dibutyrate profoundly affects many different biological systems. Phorbol-12,13-Dibutyrate,12,13-Dibutyrate, Phorbol,Phorbol 12,13 Dibutyrate

Related Publications

G Jagadeesh, and R C Deth
March 1978, The Journal of pharmacology and experimental therapeutics,
G Jagadeesh, and R C Deth
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
G Jagadeesh, and R C Deth
August 1980, Archives internationales de pharmacodynamie et de therapie,
G Jagadeesh, and R C Deth
November 1987, The Journal of pharmacology and experimental therapeutics,
G Jagadeesh, and R C Deth
April 1985, European journal of pharmacology,
G Jagadeesh, and R C Deth
January 1985, Journal of cellular biochemistry,
Copied contents to your clipboard!