Ascorbic acid deficiency and hepatic UDP-glucuronyltransferase. 1988

C M Neumann, and V G Zannoni
Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109.

The effect of dietary ascorbic acid on hepatic microsomal UDP-glucuronyltransferase (UDPGT) activity towards p-aminophenol, bilirubin, and acetaminophen was investigated. Ascorbate deficiency produced a 33% reduction in the specific activity of UDPGT towards p-aminophenol, whereas there was no difference between microsomes from ascorbate-deficient and supplemented guinea pigs in the activity towards bilirubin and acetaminophen. This suggests that the effect of the vitamin is on a specific isozyme. This reduction was correlated with the reduced quantity of hepatic microsomal cytochrome P-450, which has been previously reported for ascorbate-deficient guinea pigs. No difference was found in the apparent affinity for the substrate, p-aminophenol, or the cofactor, UDP-glucuronic acid. Differences in microsomal UDPGT activity towards p-aminophenol occurred between the two groups with membrane-perturbing processes such as sonication and Triton X-100. Sonication and magnesium chloride were found to increase activity 329% in ascorbate-supplemented animals and 138% in the ascorbate-deficient group. The addition of ascorbate acid in vitro, or its analog d-isoascorbic acid, could protect against the detrimental effects of excess substrate by maintaining a linear enzymatic rate over a 30-min time period; there was no significant effect on the initial rate of hepatic microsomal UDPGT activity in the ascorbate-supplemented animals whereas there was a significant increase in the ascorbate-deficient group. Glutathione was as effective as ascorbic acid in protecting against the detrimental effects of excess substrate whereas cysteine and dimethyltetrapteridine were only partially effective. Ascorbyl-2-sulfate and alpha-tocopherol had no significant effect.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000627 Aminophenols Phenols substituted in any position by an amino group. Hydroxyanilines
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium
D001206 Ascorbic Acid Deficiency A condition due to a dietary deficiency of ascorbic acid (vitamin C), characterized by malaise, lethargy, and weakness. As the disease progresses, joints, muscles, and subcutaneous tissues may become the sites of hemorrhage. Ascorbic acid deficiency frequently develops into SCURVY in young children fed unsupplemented cow's milk exclusively during their first year. It develops also commonly in chronic alcoholism. (Cecil Textbook of Medicine, 19th ed, p1177) Vitamin C Deficiency,Deficiency, Ascorbic Acid,Deficiency, Vitamin C,Ascorbic Acid Deficiencies,Deficiencies, Ascorbic Acid,Deficiencies, Vitamin C,Vitamin C Deficiencies

Related Publications

C M Neumann, and V G Zannoni
February 1979, Experientia,
C M Neumann, and V G Zannoni
March 1980, The Biochemical journal,
C M Neumann, and V G Zannoni
November 1973, Biochimica et biophysica acta,
C M Neumann, and V G Zannoni
April 1984, The Journal of biological chemistry,
C M Neumann, and V G Zannoni
July 1975, Biochemical pharmacology,
C M Neumann, and V G Zannoni
November 1982, Research communications in chemical pathology and pharmacology,
C M Neumann, and V G Zannoni
March 1996, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!