Agglutinogens and fimbriae of Bordetella pertussis. 1988

L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
PHLS, Center for Applied Microbiology and Research, Salisbury, Wilts, U.K.

Agglutinogen 2 (AGG2) of Bordetella pertussis is a fimbrial antigen and therefore a potential adhesin and acellular vaccine component. AGG2 was found to dissociate only under harsh conditions into the subunits of mol. wt. 22500 seen in SDS-PAGE. Results from studies of agglutinogen 3 (AGG3) are presented which confirm previous findings from this Laboratory that AGG3 is also a fimbrial protein but with a subunit mol. wt. of 22000. The amino acid sequence of AGG2, deduced from the nucleotide sequence of the gene encoding it, was used as a basis for synthesis of three peptides. Coupled to Keyhole Limpet Haemocyanin (KLH), the peptides were immunogenic in mice, inducing antibodies which bound well to homologous peptide in ELISA but poorly to intact fimbriae. Monoclonal and polyclonal serotype-specific antibodies failed to react significantly with the peptides or their KLH-conjugates. These results indicate that the synthetic peptides do not represent the serotype 2 epitope. Mice immunized with purified AGG2 or AGG3 were found to be protected against respiratory infection with B. pertussis. Results presented here indicate that this protection is, to a large extent, serotype-specific and that immunization of mice with AGG2 or AGG3 can lead to a change in serotype of the infecting strain. These results are analogous to findings from epidemiological studies of the protection induced in children by whole cell vaccines. They reaffirm the importance of both AGG2 and AGG3 as components of whole cell and acellular vaccines.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D001886 Bordetella pertussis A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath. Bacterium tussis-convulsivae,Haemophilus pertussis,Hemophilus pertussis
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D012703 Serotyping Process of determining and distinguishing species of bacteria or viruses based on antigens they share. Serotypings

Related Publications

L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
January 2007, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
September 1986, Journal of bacteriology,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
January 1996, Journal of structural biology,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
October 2014, Expert review of vaccines,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
August 1984, Journal of medical microbiology,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
May 1985, Infection and immunity,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
December 2009, BMC microbiology,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
January 1994, Micron (Oxford, England : 1993),
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
May 1995, Vaccine,
L A Ashworth, and A Robinson, and S Funnell, and A R Gorringe, and L I Irons, and R N Seabrook
May 1990, Journal of medical microbiology,
Copied contents to your clipboard!