Experimental increase of neurofilament transport rate: decreases in neurofilament number and in axon diameter. 1989

S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106.

In 2,5-hexanedione (2,5-HD)-induced axonal neuropathy, the rate of neurofilament (NF) transport increases in optic axons. To test the prediction that increases in the rate of polymer transport in any one locality of the axon lead directly to a decrease in the number of NF in that locality, NF and microtubules (MT) were quantitatively analyzed in axonal cross sections. In 2,5-HD axons the number of NF was 38% of that in control axons while the number of MT was not significantly changed; it appears that the drug treatment decreases NF number in the proximal axon regions, most directly through an increase in rate of NF transport. In those regions, the cross-sectional areas of the 2,5-HD-treated axons were 45% smaller than those of control axons; although the axons had shrunk in diameter, they retained their normal cylindrical shapes as measured by the index of circularity. Reduced internal expansive forces in the axon, working in conjunction with the normal external compressive forces, appear to reduce the radius of the axon. Quantitative analyses demonstrated that the average and the maximum lateral spacings between NF-NF, NF-MT, and MT-MT were all 30% larger in 2,5-HD-treated axons than in control axons. This suggests that polymers are relatively free to move laterally away from one another and to fill the available space within the axon. These observations are not consistent with models wherein 2,5-HD acts to crosslink the NF into an immobile network that can no longer advance within the axon. Instead, it appears more likely that 2,5-HD acts selectively on the interaction between some NF and the slow transport mechanism to increase the rate of NF transport.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D006588 Hexanones 6-carbon straight-chain or branched ketones. Butyl Methyl Ketones,Ethyl Propyl Ketones,Ketones, Butyl Methyl,Ketones, Ethyl Propyl,Methyl Ketones, Butyl,Propyl Ketones, Ethyl
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
January 1999, Neuroscience,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
May 1996, The Journal of comparative neurology,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
November 1996, The Journal of cell biology,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
January 1991, Ophthalmology,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
September 1999, Proceedings of the National Academy of Sciences of the United States of America,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
July 2015, NeuroImage,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
January 2015, PloS one,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
January 1962, Acta morphologica Neerlando-Scandinavica,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
August 1972, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
S Monaco, and L Autilio-Gambetti, and R J Lasek, and M J Katz, and P Gambetti
July 1981, Neuroscience letters,
Copied contents to your clipboard!