Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons. 1996

D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA.

It has been postulated that phosphorylation of the carboxy terminus sidearms of neurofilaments (NFs) increases axon diameter through repulsive electrostatic forces that increase sidearm extension and interfilament spacing. To evaluate this hypothesis, the relationships among NF phosphorylation, NF spacing, and axon diameter were examined in uninjured and spinal cord-transected larval sea lampreys (Petromyzon marinus). In untransected animals, axon diameters in the spinal cord varied from 0.5 to 50 microns. Antibodies specific for highly phosphorylated NFs labeled only large axons (> 10 microns), whereas antibodies for lightly phosphorylated NFs labeled medium-sized and small axons more darkly than large axons. For most axons in untransected animals, diameter was inversely related to NF packing density, but the interfilament distances of the largest axons were only 1.5 times those of the smallest axons. In addition, the lightly phosphorylated NFs of the small axons in the dorsal columns were widely spaced, suggesting that phosphorylation of NFs does not rigidly determine their spacing and that NF spacing does not rigidly determine axon diameter. Regenerating neurites of giant reticulospinal axons (GRAs) have diameters only 5-10% of those of their parent axons. If axon caliber is controlled by NF phosphorylation via mutual electrostatic repulsion, then NFs in the slender regenerating neurites should be lightly phosphorylated and densely packed (similar to NFs in uninjured small caliber axons), whereas NFs in the parent GRAs should be highly phosphorylated and loosely packed. However, although linear density of NFs (the number of NFs per micrometer) in these slender regenerating neurites was twice that in their parent axons, they were highly phosphorylated. Following sectioning of these same axons close to the cell body, axon-like neurites regenerated ectopically from dendritic tips. These ectopically regenerating neurites had NF linear densities 2.5 times those of uncut GRAs but were also highly phosphorylated. Thus, in the lamprey, NF phosphorylation may not control axon diameter directly through electrorepulsive charges that increase NF sidearm extension and NF spacing. It is possible that phosphorylation of NFs normally influences axon diameter through indirect mechanisms, such as the slowing of NF transport and the formation of a stationary cytoskeletal lattice, as has been proposed by others. Such a mechanism could be overridden during regeneration, when a more compact, phosphorylated NF backbone might add mechanical stiffness that promotes the advance of the neurite tip within a restricted central nervous system environment.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament

Related Publications

D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
January 1999, Neuroscience,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
April 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
March 2005, Neurorehabilitation and neural repair,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
January 1989, Neuroscience,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
September 1990, Neurochemical research,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
January 1989, Journal of neuropathology and experimental neurology,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
January 1985, Journal of neuroscience research,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
January 2015, PloS one,
D S Pijak, and G F Hall, and P J Tenicki, and A S Boulos, and D I Lurie, and M E Selzer
December 2000, Brain research,
Copied contents to your clipboard!