Arteriolar control of capillary cell flow in striated muscle. 1989

T E Sweeney, and I H Sarelius
Department of Biophysics, University of Rochester, School of Medicine, New York 14642.

This study tests the hypothesis that capillary perfusion is controlled in groups rather than at the level of the individual capillary. We measured cell flux (using cells labeled with substituted tetramethyl rhodamine isothiocyanate, XRITC) and vessel diameter in adjoining arterioles of the terminal vasculature of hamster cremaster muscle (Nembutal, 70 mg/kg i.p.) during rest and hyperemia (10(-4) M adenosine). In terminal arterioles (TAs), 32 of 68 vessels showed cell flux increases from rest to hyperemia exceeding 25 times (i.e., 47% of TAs were relatively unperfused at rest). In vessels feeding TAs (TAFs), 33 of 95 (34%) were relatively unperfused at rest. Cell flux heterogeneity in TAFs decreased significantly by 27% from rest to hyperemia; the corresponding decrease (16%) in TAs was not significant. Thus, unperfused TAFs are present in a proportion which reflects capillary recruitment in hamster cremaster (Sarelius et al, Am J Physiol 1981;241:H317) while TAs are not, and TAFs independently modulate flow distribution distally while TAs do not. The data therefore support the conclusion that TAFs control cell flow in the distal microvasculature. Analysis of normalized ranked maximal diameters showed that TAFs unperfused at rest tend to be the smaller vessels at any tissue site.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D012146 Rest Freedom from activity. Rests
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006940 Hyperemia The presence of an increased amount of blood in a body part or an organ leading to congestion or engorgement of blood vessels. Hyperemia can be due to increase of blood flow into the area (active or arterial), or due to obstruction of outflow of blood from the area (passive or venous). Active Hyperemia,Arterial Hyperemia,Passive Hyperemia,Reactive Hyperemia,Venous Congestion,Venous Engorgement,Congestion, Venous,Engorgement, Venous,Hyperemia, Active,Hyperemia, Arterial,Hyperemia, Passive,Hyperemia, Reactive,Hyperemias,Hyperemias, Reactive,Reactive Hyperemias

Related Publications

T E Sweeney, and I H Sarelius
April 1997, The American journal of physiology,
T E Sweeney, and I H Sarelius
April 1983, The American journal of physiology,
T E Sweeney, and I H Sarelius
July 1994, The American journal of physiology,
T E Sweeney, and I H Sarelius
March 1995, The American journal of physiology,
T E Sweeney, and I H Sarelius
January 1996, International journal of microcirculation, clinical and experimental,
T E Sweeney, and I H Sarelius
January 1997, Microvascular research,
T E Sweeney, and I H Sarelius
November 1978, The American journal of physiology,
T E Sweeney, and I H Sarelius
December 1990, The American journal of physiology,
T E Sweeney, and I H Sarelius
January 2008, Microcirculation (New York, N.Y. : 1994),
T E Sweeney, and I H Sarelius
October 1993, The American journal of physiology,
Copied contents to your clipboard!