Effects of dopamine beta-monooxygenase substrate analogs on ascorbate levels and norepinephrine synthesis in adrenal chromaffin granule ghosts. 1989

K Wimalasena, and H H Herman, and S W May
School of Chemistry, Georgia Institute of Technology, Atlanta 30332.

Chromaffin granule ghosts from bovine adrenal medullae have been used to investigate the effects of prototypic dopamine beta-monooxygenase substrate analogs of two distinct classes on intravesicular reduced ascorbic acid (AscH2) levels and on norepinephrine synthesis. Phenyl-2-aminoethyl sulfide (PAES), a sulfur-containing substrate, was shown to concentrate within ghosts, a process that was time and ATP dependent, but reserpine insensitive. Dopamine beta-monooxygenase oxygenation of PAES resulted in accumulation of the oxygenation product, PAESO, without affecting intravesicular levels of AscH2. Similarly, incubations of ghosts with phenyl-2-aminoethyl selenide (PAESe) also resulted in rapid, time- and ATP-dependent, but reserpine-insensitive uptake. However, oxygenation of PAESe by dopamine beta-monooxygenase within ghosts was found to cause a marked decrease in intravesicular AscH2, without buildup of the oxygenated product, phenyl 2-aminoethyl selenoxide. These results illustrate two basic differences between the consequences of PAES and PAESe turnover: while PAES accumulation proceeds concomitant with PAESO production and without AscH2 depletion, PAESe accumulation proceeds with a marked lowering of internal AscH2 but without observable product formation. Both PAES and PAESe were capable of competing with dopamine, the physiological substrate, for enzymatic oxygenation and/or vesicular uptake, and were capable of significantly reducing norepinephrine synthesis. In experiments where ghosts were preincubated with either PAES or PAESe with delayed addition of dopamine, it was clear that neither compound nor their oxygenated products interfered with electron transport via cytochrome b561. These results are consistent with the hypothesis that the physiological activity observed with both PAES and PAESe may be related to their ability to gain entrance to adrenergic neurons and decrease norepinephrine synthesis within neurotransmitter storage vesicles.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010087 Oxides Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides. Oxide
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D005021 Ethylamines Derivatives of ethylamine (the structural formula CH3CH2NH2).
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal

Related Publications

K Wimalasena, and H H Herman, and S W May
June 1991, The Journal of biological chemistry,
K Wimalasena, and H H Herman, and S W May
February 1987, The Journal of biological chemistry,
K Wimalasena, and H H Herman, and S W May
December 1981, The Journal of biological chemistry,
K Wimalasena, and H H Herman, and S W May
October 1992, Biochemical and biophysical research communications,
K Wimalasena, and H H Herman, and S W May
November 1996, Biochemical and biophysical research communications,
K Wimalasena, and H H Herman, and S W May
May 1979, The Journal of biological chemistry,
K Wimalasena, and H H Herman, and S W May
November 1981, Biochemistry,
K Wimalasena, and H H Herman, and S W May
February 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!