Muscle cell differentiation is associated with increased insulin receptor biosynthesis and messenger RNA levels. 1989

A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
Cell Biology Laboratory, Mount Zion Hospital and Medical Center, San Francisco, California 94115.

Muscle is a major tissue for insulin action. To study the effect of muscle differentiation on insulin receptors, we employed cultured mouse muscle BC3H-1 and C2 cells. In both cell lines differentiation from myoblasts to myocytes was associated with a 5-10-fold increase in specific 125I-insulin binding to intact cells. When 125I-insulin binding was carried out on solubilized myocytes and myoblasts, 125I-insulin binding to myoblasts was low. After differentiation the number of insulin receptors increased 5-10-fold. In contrast to insulin binding, insulin growth factor I receptor binding was elevated in myoblasts and was decreased by 50% in myocytes. Specific radioimmunoassay of the insulin receptor indicated that the increase in insulin binding to myocytes was due to an increase in insulin receptor content. Studies employing [35S]methionine indicated that this increase in insulin-binding sites reflected an increase in insulin receptor biosynthesis. To study insulin receptor gene expression, myoblast and myocyte mRNA was isolated and analyzed on Northern and slot blots. Differentiation from myoblasts to myocytes was accompanied by a 5-10-fold increase in insulin receptor mRNA. These studies demonstrate, therefore that differentiation in muscle cells is accompanied by increased insulin receptor biosynthesis and gene expression.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
December 1989, The Journal of clinical endocrinology and metabolism,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
June 1996, Neuroscience,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
February 1989, Biochemical and biophysical research communications,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
January 1987, Proceedings of the National Academy of Sciences of the United States of America,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
July 1981, Science (New York, N.Y.),
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
November 1998, British journal of haematology,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
August 2007, BMC cancer,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
August 1991, Journal of lipid research,
A Brunetti, and B A Maddux, and K Y Wong, and I D Goldfine
December 1991, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!