Differential induction and intracellular localization of SCG10 messenger RNA is associated with neuronal differentiation. 1996

A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
Developmental Neurobiology Unit, Children's Medical Research Institute, Wentworthville, NSW, Australia.

The differentiation of neurons involves the establishment of distinct molecular compartments which regulate neuronal shape and function. This requires targeting of specific gene products to growth-associated regions of the neuron. We have investigated the temporal and spatial regulation of SCG10 gene expression during neuronal differentiation. There are two SCG10 messenger RNAs, 1 and 2 kg in length, which encode the same growth-associated protein. These messenger RNAs were found to be differentially regulated during the onset of neurite outgrowth in early rat cerebellum development. In PC12 cells, the two SCG10 messenger RNAs were shown to be differentially induced by nerve growth factor. Regulation of the 2 kb messenger RNA, but not the 1 kb messenger RNA, is dependent on the differentiation of PC12 cells, indicating that post-transcriptional regulation of SCG10 expression during neurite outgrowth. Spatial regulation of the 2 kb SCG10 messenger RNA distribution during brain development was examined by in situ hybridization. The 2 kb messenger RNA was found to be localized to the neuronal pole where outgrowth was occurring, within differentiating neurons in vivo. Intracellular localization of SCG10 messenger RNA was also observed in differentiating primary cultured neurons, with the 2 kb messenger RNA transported into growing neurites during the development of neuronal polarity. In neurons which had developed polarity, the 2 kb SCG10 messenger RNA was consistently found in the cell body and axon. This study demonstrates both temporal and spatial post-transcriptional regulation of SCG10 expression which is associated with neurite outgrowth. The directed transport and positional translation of SCG10 messenger RNA provide a potential mechanism for protein targeting and the creation of molecular compartments during neuronal differentiation.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009424 Nervous System Physiological Phenomena Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM. Nervous System Physiologic Processes,Nervous System Physiological Processes,Nervous System Physiology,Nervous System Physiological Concepts,Nervous System Physiological Phenomenon,Nervous System Physiological Process,Physiology, Nervous System,System Physiology, Nervous
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell

Related Publications

A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
June 1994, Neuroscience,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
June 1996, Biochimica et biophysica acta,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
October 1995, Molecular and cellular neurosciences,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
December 1965, Proceedings of the National Academy of Sciences of the United States of America,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
January 1989, The Journal of clinical investigation,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
August 1994, Brain research,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
January 2001, Neuroscience,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
May 2001, Journal of biochemistry,
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
August 2018, Cerebral cortex (New York, N.Y. : 1991),
A J Hannan, and R C Henke, and R P Weinberger, and J W Sentry, and P L Jeffrey
May 1991, Planta,
Copied contents to your clipboard!