Membrane potential differences between adriamycin-sensitive and -resistant cells as measured by flow cytometry. 1989

M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
Max-Planck Institut fur Biochemie, Mildred-Scheel-Labor fur Krebszellforschung, Martinsried, F.R.G.

Using the fluorescent membrane potential probe, 3,3'-dihexyl-oxacarbocyanine (DiOC6(3], we found a 4-fold higher uptake in Adriamycin (ADM)-sensitive versus -resistant Friend leukemia cells (FLC). When sensitive cells were treated in the presence of high potassium (120 mM K+), there was a greater than 80% reduction of DiOC6(3) uptake. Using carbonylcyanide 4-trifluoromethoxy-phenylhydrazone (FCCP), a specific inhibitor of mitochondrial membrane potential, DiOC6(3) accumulation was reduced by less than 30% in these cells. Both results support the conclusion that a greater uptake of DiOC6(3) in ADM-sensitive than in -resistant cells indicates an increased plasma transmembrane potential. Since electronegative plasma membrane potentials are a driving force for the transport of lipophilic positively-charged compounds, differences in membrane potentials between sensitive and multiple drug resistant (MDR) tumor cells could have an important influence on drug accumulation and cytotoxicity. The drugs which our ADM-resistant FLC display multiple drug resistance to are positively charged. In MDR FLC, the calcium channel antagonist, verapamil, has been shown to block the efflux of Rhodamine 123 (Rho 123) and other positively-charged compounds. Since DiOC6(3) is also positively-charged, we used verapamil to investigate its effects on drug uptake. In MDR FLC, verapamil increased DiOC6(3) accumulation by 1.9-fold, whereas in sensitive cells it was increased 1.5-fold. In contrast, verapamil increased the levels of Rho 123 in resistant cells 7.8-fold but lowered them in sensitive cells 1.5-fold. The minimal loss of DiOC6(3) from both sensitive and MDR cells and the above results can best be interpreted as indicating that DiOC6(3) is not transported by the efflux "pump" system but that verapamil induces a plasma membrane potential increase in sensitive and resistant cells that DiOC6(3) is sensitive to. On the other hand, since Rho 123 did appear to be actively effluxed from these resistant cells, the enhancement of this compound by verapamil was more likely due to inhibition of the MDR "pump." How, or whether, plasma membrane potentials and the MDR efflux "pump" are related remains to be investigated. In the resistant cells, verapamil also induced an increase (13-fold) in the accumulation of the electrically neutral fluorescent probe for calcium, INDO-1/AM. However, verapamil had no effect on the efflux of this compound, which was equivalent in both resistant and sensitive cells. Thus, a new effect of verapamil on drug accumulation in MDR cells is identified here.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
March 1982, Cytometry,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
January 1984, Medical oncology and tumor pharmacotherapy,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
February 2021, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
May 1990, Gan to kagaku ryoho. Cancer & chemotherapy,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
July 2000, Methods (San Diego, Calif.),
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
May 2004, Current protocols in cytometry,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
January 1992, Cytometry,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
April 1986, Journal of leukocyte biology,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
April 1986, International journal of peptide and protein research,
M Hasmann, and G K Valet, and H Tapiero, and K Trevorrow, and T Lampidis
December 1979, British journal of cancer,
Copied contents to your clipboard!