Excitatory interactions between phrenic motoneurons: intracellular study in the cat. 1989

M Khatib, and G Hilaire, and R Monteau
Département de Physiologie et Neurophysiologie (UA 205), Faculté des Sciences et Techniques Saint-Jérôme, Marseille, France.

1. Intracellular recordings were made from 220 Phrenic Motoneurons (PM) in anaesthetized, spontaneously breathing cats, deafferented from C3 to C7, in order to look for somatic events related to the Recurrent Responses (RR) evoked in PM axons by repetitive stimulation of the phrenic nerve. RR appear sporadically at a constant latency, originate from a spinal nicotinic mechanism and can be evoked in a PM without the presence of an antidromic volley in its axon (Khatib et al. 1986). 2. Using stimuli effective for eliciting RR in axons, we failed to observe intracellularly somatic events corresponding to RR after the occurrence of an antidromic action potential. RR were observed extracellularly in two cases, but in both cases the recording originated from axons. 3. We attempted to elicit somatic RR without a preceding antidromic action potential, using either parathreshold stimulation of the impaled PM, or suprathreshold stimulation of a phrenic strand which excluded the axon of the impaled PM. In both cases, RR-like events, with very stable latencies, appeared sporadically in 4/142 and 2/15 PMs respectively. 4. Parathreshold stimuli or stimulation of a strand were coupled with averaging of the synaptic noise in order to look for small events temporally related to the stimuli. Short latency small depolarizations, looking-like recurrent EPSPs, were revealed in 22/142 and 5/15 PMs respectively. 5. These results confirm the existence of interrelations between PMs, providing for re-excitation and coupling within the phrenic pool, in addition to centrally imposed synchronization.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Khatib, and G Hilaire, and R Monteau
August 1994, Journal of applied physiology (Bethesda, Md. : 1985),
M Khatib, and G Hilaire, and R Monteau
June 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Khatib, and G Hilaire, and R Monteau
January 1990, Brain research. Developmental brain research,
M Khatib, and G Hilaire, and R Monteau
September 1983, The Journal of comparative neurology,
M Khatib, and G Hilaire, and R Monteau
April 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Khatib, and G Hilaire, and R Monteau
March 1991, Journal of neurophysiology,
M Khatib, and G Hilaire, and R Monteau
August 1988, Journal of neurophysiology,
M Khatib, and G Hilaire, and R Monteau
November 1977, The Journal of physiology,
M Khatib, and G Hilaire, and R Monteau
December 1989, Brain research,
M Khatib, and G Hilaire, and R Monteau
January 1985, Experimental brain research,
Copied contents to your clipboard!