Fatty acid-dependent ethanol metabolism. 1985

J A Handler, and R G Thurman

Rates of ethanol oxidation by perfused livers from fasted female rats were decreased from 82 +/- 8 to 11 +/- 7 mumol/g/hr by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase. The subsequent addition of fatty acids of various chain lengths in the presence of 4-methylpyrazole increased rates of ethanol uptake markedly. Palmitate (1 mM) increased rates of ethanol oxidation to 95 +/- 8 mumol/g/hr, while octanoate and oleate increased rates to 58 +/- 11 and 68 +/- 15 mumol/g/hr, respectively. Hexanoate, a short-chain fatty acid oxidized predominantly in the mitochondria, had no effect. Addition of oleate also increased the steady-state level of catalase-H2O2. Pretreatment of rats for 1.5 hours with 3-amino-1,2,4-triazole (1.0 g/kg), an inhibitor of catalase, prevented the ethanol-dependent decrease in the steady-state level of catalase-H2O2 completely. Under these conditions, aminotriazole decreased rates of ethanol oxidation by about 50% and blocked the stimulation of ethanol oxidation by fatty acids. Oleate decreased rates of aniline hydroxylation by about 50%, indicating that cytochrome P450 is not involved in the stimulation of ethanol uptake by fatty acids. Furthermore, oleate stimulated ethanol uptake in livers from ADH-negative deermice indicating that fatty acids do not simply displace 4-methylpyrazole from alcohol dehydrogenase. It is concluded that the stimulation of ethanol oxidation by fatty acids is due to increased H2O2 supplied by the peroxisomal beta-oxidation of fatty acids for the catalase-H2O2 peroxidation pathway.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010542 Peromyscus A genus of the subfamily SIGMODONTINAE consisting of 49 species. Two of these are widely used in medical research. They are P. leucopus, or the white-footed mouse, and P. maniculatus, or the deer mouse. Mice, Deer,Mice, White-Footed,Mouse, Deer,Mouse, White-Footed,Deer Mice,Deer Mouse,Mice, White Footed,Mouse, White Footed,White-Footed Mice,White-Footed Mouse
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone

Related Publications

J A Handler, and R G Thurman
September 1986, Nuclear medicine communications,
J A Handler, and R G Thurman
July 1971, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
J A Handler, and R G Thurman
June 2022, Alcoholism, clinical and experimental research,
J A Handler, and R G Thurman
January 1991, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
J A Handler, and R G Thurman
May 1963, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J A Handler, and R G Thurman
August 1989, Biochemical and biophysical research communications,
J A Handler, and R G Thurman
May 2024, American journal of physiology. Gastrointestinal and liver physiology,
J A Handler, and R G Thurman
February 1961, The Journal of clinical investigation,
J A Handler, and R G Thurman
November 1998, Journal of molecular and cellular cardiology,
J A Handler, and R G Thurman
April 1987, The Journal of biological chemistry,
Copied contents to your clipboard!