3,5-Dicaffeoylquinic Acid Disperses Aspergillus Fumigatus Biofilm and Enhances Fungicidal Efficacy of Voriconazole and Amphotericin B. 2018

Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).

BACKGROUND The aim of this study was to evaluate the dispersal effects of 3,5-dicaffeoylquinic acid (3,5-DCQA) against the preformed biofilm of Aspergillus fumigatus and to investigate its potential mechanism. MATERIAL AND METHODS Aspergillus fumigatus biofilms of laboratory strain AF293 and clinical strain GXMU04 were generated in 24- or 96-well polystyrene microtiter plates in vitro. Crystal violet assay and XTT reduction assay were performed to evaluate the effects of 3,5-DCQA on biofilm biomass, extracellular matrix, and metabolic activity alteration of cells in biofilms. Real-time PCR was performed to quantify the expression of hydrophobin genes. The cytotoxicity of 3,5-DCQA on human erythrocytes was evaluated by a hemolytic assay. RESULTS The results indicated that 3,5-DCQA in subminimum inhibitory concentrations (256 to 1024 mg/L) elicited optimal A. fumigatus biofilm dispersion activity and improved the efficacy of VRC and AMB in minimal fungicidal concentrations (MFCs) to combat fungal cells embedded in biofilms. The results of scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) revealed 3,5-DCQA facilitated the entry of antifungal agents into the A. fumigatus biofilm through eliminating the hydrophobic extracellular matrix (ECM) without affecting fungal growth. Real-time PCR indicated that 3,5-DCQA down-regulated the expression of hydrophobin genes. Hemolytic assay confirmed that 3,5-DCQA exhibited a low cytotoxicity against human erythrocytes. CONCLUSIONS Subminimum inhibitory concentrations of 3,5-DCQA can disperse A. fumigatus biofilm and enhance fungicidal efficacy of VRC and AMB through down-regulating expression of the hydrophobin genes. The study indicated the anti-biofilm potential of 3,5-DCQA for the management of A. fumigatus biofilm-associated infection.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D001773 Blood Cells The cells found in the body fluid circulating throughout the CARDIOVASCULAR SYSTEM. Blood Corpuscles,Blood Cell,Blood Corpuscle,Cell, Blood,Cells, Blood,Corpuscle, Blood,Corpuscles, Blood
D002726 Chlorogenic Acid A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). 3-Caffeoylquinic Acid,3 Caffeoylquinic Acid,Acid, 3-Caffeoylquinic,Acid, Chlorogenic
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000666 Amphotericin B Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. Amphocil,Amphotericin,Amphotericin B Cholesterol Dispersion,Amphotericin B Colloidal Dispersion,Fungizone
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D001232 Aspergillus fumigatus A species of imperfect fungi from which the antibiotic fumigatin is obtained. Its spores may cause respiratory infection in birds and mammals. Aspergillus fumigates,Neosartorya fumigata,Sartorya fumigata

Related Publications

Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
June 2005, The Journal of antimicrobial chemotherapy,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
June 2008, The Journal of antimicrobial chemotherapy,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
March 2023, Microbiology spectrum,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
September 2007, Antimicrobial agents and chemotherapy,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
October 2013, Antimicrobial agents and chemotherapy,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
November 1997, Mayo Clinic proceedings,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
September 2015, International journal of antimicrobial agents,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
September 1998, The Journal of antimicrobial chemotherapy,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
May 2015, Antimicrobial agents and chemotherapy,
Jing Luo, and Ke Wang, and Geng S Li, and Dan Q Lei, and Yuan J Huang, and Wei D Li, and Yi Q Chen, and Jin L Kong
November 2015, Investigative ophthalmology & visual science,
Copied contents to your clipboard!