Evidence for a two-domain structure of the terminal membrane C5b-9 complex of human complement. 1979

S Bhakdi, and J Tranum-Jensen

Lipid vesicles carrying the purified membrane C5b-9 complex [C5b-9(m)] of complement were analyzed immunochemically and in the electron microscope after treatment with a combination of trypsin and alpha-chymotrypsin. Under reducing conditions, the externally oriented annulus was removed. The remaining part of the C5b-9(m), representing approximately half of the total mass of the macromolecular complex, was visualized in the electron microscope as a hollow cylindrical structure with walls of 1-nm thickness. This structure remained tenaciously attached to the lipid bilayer, projecting 8-9 nm from the external membrane surface into the aqueous environment. Cleavage of C5b-9(m) by proteolysis and reduction resulted in a sharp reduction of tis antigenic determinants. One hydrophilic protease-resistant C5 derivative was released from the membrane and recovered in the fluid phase. The membrane-bound residue almost totally lacked antigens precipitable with antisera to C5, C6, C9, and C5b-9(m).

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003182 Complement C5 C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX. C5 Complement,Complement 5,Complement C5, Precursor,Complement Component 5,Precursor C5,Pro-C5,Pro-complement 5,C5, Complement,C5, Precursor,C5, Precursor Complement,Complement, C5,Component 5, Complement,Precursor Complement C5,Pro C5,Pro complement 5
D003183 Complement C6 A 105-kDa serum glycoprotein with significant homology to the other late complement components, C7-C9. It is a polypeptide chain cross-linked by 32 disulfide bonds. C6 is the next complement component to bind to the membrane-bound COMPLEMENT C5B in the assembly of MEMBRANE ATTACK COMPLEX. It is encoded by gene C6. C6 Complement,Complement 6,Complement Component 6,C6, Complement,Complement, C6,Component 6, Complement
D003184 Complement C7 A 93-kDa serum glycoprotein encoded by C7 gene. It is a polypeptide chain with 28 disulfide bridges. In the formation of MEMBRANE ATTACK COMPLEX; C7 is the next component to bind the C5b-6 complex forming a trimolecular complex C5b-7 which is lipophilic, resembles an integral membrane protein, and serves as an anchor for the late complement components, C8 and C9. C7 Complement,Complement 7,Complement Component 7,C7, Complement,Complement, C7,Component 7, Complement
D003185 Complement C8 A 150-kDa serum glycoprotein composed of three subunits with each encoded by a different gene (C8A; C8B; and C8G). This heterotrimer contains a disulfide-linked C8alpha-C8gamma heterodimer and a noncovalently associated C8beta chain. C8 is the next component to bind the C5-7 complex forming C5b-8 that binds COMPLEMENT C9 and acts as a catalyst in the polymerization of C9. C8 Complement,Complement 8,Complement Component 8,Complement Component C8 alpha,Complement Component C8 alpha Chain,Complement Component C8 beta,Complement Component C8 beta Chain,Complement Component C8 gamma,Complement Component C8 gamma Chain,C8, Complement,Complement, C8,Component 8, Complement
D003186 Complement C9 A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections. C9 Complement,Complement 9,Complement Component 9,C9, Complement,Complement, C9,Component 9, Complement

Related Publications

S Bhakdi, and J Tranum-Jensen
January 1993, Immunologic research,
S Bhakdi, and J Tranum-Jensen
August 1985, Bioscience reports,
S Bhakdi, and J Tranum-Jensen
September 1986, Journal of immunology (Baltimore, Md. : 1950),
S Bhakdi, and J Tranum-Jensen
May 1993, The Journal of clinical investigation,
S Bhakdi, and J Tranum-Jensen
August 1987, Clinical and experimental immunology,
S Bhakdi, and J Tranum-Jensen
September 1983, British journal of haematology,
Copied contents to your clipboard!