Correlation of polypeptide composition with functional events in acetylcholine receptor-enriched membranes from Torpedo californica. 1979

H P Moore, and P R Hartig, and M A Raftery

Membrane vesicles containing partially inactivated acetylcholine receptor (AcChoR) channels may produce a full 22Na+ flux response because an excess of channels may exist above the level needed to completely empty the vesicles of ions. Therefore, attempts to use ion flux amplitudes as indicators of AcChoR function may fail due to the presence of these excess AcChoR channels. Random inactivation of variable fractions of AcChoR channels in vesicles by the irreversible binding of the neurotoxin alpha-bungarotoxin provides a tool for assessing the size of the excess receptor population. Using this approach, we predict that the dependence of the flux response on partial inactivation by alpha-bungarotoxin will drastically change if an essential AcChoR component is substantially removed from the membranes. Membranes from which Mr 43,000, Mr 90,000, and other polypeptides had been substantially removed by base extraction exhibited a flux response after random inactivation that was indistinguishable from that of untreated membranes. Therefore, those components which are substantially removed by base extraction do not appear to be essential for AcChoR-mediated ion flux.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane

Related Publications

H P Moore, and P R Hartig, and M A Raftery
June 1986, Anesthesiology,
H P Moore, and P R Hartig, and M A Raftery
June 1980, The Journal of cell biology,
H P Moore, and P R Hartig, and M A Raftery
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
H P Moore, and P R Hartig, and M A Raftery
July 1982, Biochemistry,
H P Moore, and P R Hartig, and M A Raftery
April 1983, The Journal of biological chemistry,
H P Moore, and P R Hartig, and M A Raftery
February 1977, Immunochemistry,
H P Moore, and P R Hartig, and M A Raftery
August 1982, The Journal of biological chemistry,
Copied contents to your clipboard!