Testosterone allosterically regulates ethanol oxidation by homo- and heterodimeric gamma-subunit-containing isozymes of human alcohol dehydrogenase. 1986

G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee

Testosterone and its physiologically active metabolite 5 alpha-dihydrotestosterone are selective, allosteric inhibitors of the gamma subunit-containing isozymes of class I human alcohol dehydrogenase (ADH) with apparent Ki values for testosterone at pH 7.4 between 3.5 and 16 X 10(-6) M. Testosterone inhibition is noncompetitive with respect to ethanol, NAD+, 1,10-phenanthroline, and 4-methylpyrazole, identifying a regulatory site distinct from the catalytic site. Testosterone does not inhibit the class I isozymes composed only of alpha and/or beta subunits and only weakly inhibits the class II and III isozymes. Importantly, none of these human ADH isozymes oxidize or reduce the steroids with the delta 4 double bond or 5 alpha configuration. The allosteric effect of testosterone, restricted to the gamma subunits of human ADH, suggests unique metabolic specificities and pathways for these isozymes, apart from all others. This inhibition may ultimately be critical to an identification of their function(s). Analogous considerations of other metabolic effectors might further lead to similar insights regarding the alpha and beta subunit-containing isozymes as well as the class II and III ADH.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
March 1991, Biochemistry,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
September 1987, Biochemistry,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
January 1990, Progress in clinical and biological research,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
January 1983, Isozymes,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
January 1974, Japanese journal of pharmacology,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
January 2000, Journal of biochemical and molecular toxicology,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
January 1987, Isozymes,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
April 2007, The Journal of biological chemistry,
G Mårdh, and K H Falchuk, and D S Auld, and B L Vallee
December 1987, Biochemistry,
Copied contents to your clipboard!