Substrate specificity of human class I alcohol dehydrogenase homo- and heterodimers containing the beta 2 (Oriental) subunit. 1987

W P Fong, and W M Keung
Department of Biochemistry, Chinese University of Hong Kong, Shatin, N.T.

In order to gain a better understanding of the metabolism of ethanol in Orientals, the kinetic properties of human alcohol dehydrogenase (ADH) isozymes containing the beta 2 (Oriental) subunit, i.e., alpha beta 2, beta 2 gamma 1, beta 2 beta 2, beta 2 gamma 2, as well as gamma 1 gamma 1, were examined by using primary and secondary alcohol substrates of various chain lengths and compared with those of the corresponding beta 1 (Caucasian) subunit containing isozymes already on record [Wagner, F. W., Burger, A. R., & Vallee, B. L. (1983) Biochemistry 22, 1857-1863]. With primary alcohols, these isozymes follow typical Michaelis-Menten kinetics with a preference for long-chain alcohols, as indicated by Km and kcat/Km values. The kcat values obtained with primary alcohols, except methanol, do not vary greatly, i.e., less than 3-fold, whereas the corresponding Km values span a 3600-fold range, i.e., from 26 microM to 94 mM, indicating that the specificity of these isozymes manifests principally in substrate binding. As a consequence, ethanol--which might be thought to be the principal in vivo substrate for ADH--is oxidized rather poorly, i.e., from 50- to 90-fold less effectively than octanol. Secondary alcohol oxidation by the homodimers beta 2 beta 2 and gamma 1 gamma 1 also follows normal Michaelis-Menten kinetics. Again, values of Km and kcat/Km reveal that both isozymes prefer long carbon chains. For all secondary alcohols studied, the Km and kcat values for beta 2 beta 2 are much higher than those for gamma 1 gamma 1, i.e., 25- to 360-fold and 6- to 16-fold, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

W P Fong, and W M Keung
May 1986, Proceedings of the National Academy of Sciences of the United States of America,
W P Fong, and W M Keung
July 1982, Archives of biochemistry and biophysics,
Copied contents to your clipboard!