Novel Bacterial Topoisomerase Inhibitors Exploit Asp83 and the Intrinsic Flexibility of the DNA Gyrase Binding Site. 2018

Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia. sebastian.franco@iit.it.

DNA gyrases are enzymes that control the topology of DNA in bacteria cells. This is a vital function for bacteria. For this reason, DNA gyrases are targeted by widely used antibiotics such as quinolones. Recently, structural and biochemical investigations identified a new class of DNA gyrase inhibitors called NBTIs (i.e., novel bacterial topoisomerase inhibitors). NBTIs are particularly promising because they are active against multi-drug resistant bacteria, an alarming clinical issue. Structural data recently demonstrated that these NBTIs bind tightly to a newly identified pocket at the dimer interface of the DNA-protein complex. In the present study, we used molecular dynamics (MD) simulations and docking calculations to shed new light on the binding of NBTIs to this site. Interestingly, our MD simulations demonstrate the intrinsic flexibility of this binding site, which allows the pocket to adapt its conformation and form optimal interactions with the ligand. In particular, we examined two ligands, AM8085 and AM8191, which induced a repositioning of a key aspartate (Asp83B), whose side chain can rotate within the binding site. The conformational rearrangement of Asp83B allows the formation of a newly identified H-bond interaction with an NH on the bound NBTI, which seems important for the binding of NBTIs having such functionality. We validated these findings through docking calculations using an extended set of cognate oxabicyclooctane-linked NBTIs derivatives (~150, in total), screened against multiple target conformations. The newly identified H-bond interaction significantly improves the docking enrichment. These insights could be helpful for future virtual screening campaigns against DNA gyrase.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000072756 Protein Conformation, alpha-Helical A secondary structure of proteins that is a right-handed helix or coil, where each amino (N-H) group of the peptide backbone contributes a hydrogen bond to the carbonyl(C alpha-Helical Conformation, Protein,alpha-Helical Protein Conformation,alpha-Helical Structures,alpha-Helices,alpha-Helix,Conformation, Protein alpha-Helical,Conformation, alpha-Helical Protein,Conformations, Protein alpha-Helical,Conformations, alpha-Helical Protein,Protein Conformation, alpha Helical,Protein Conformations, alpha-Helical,alpha Helical Conformation, Protein,alpha Helical Protein Conformation,alpha Helical Structures,alpha Helices,alpha Helix,alpha-Helical Conformations, Protein,alpha-Helical Protein Conformations,alpha-Helical Structure
D000072757 Protein Conformation, beta-Strand A secondary structure of proteins where the amino (N-H) groups of a polypeptide backbone, three to ten amino acids in length, establish hydrogen bonds with the carbonyl (C Protein Conformation, beta-Sheet,beta-Pleated Sheet,beta-Sheet,beta-Sheets,beta-Strand,beta-Stranded Structures,beta-Strands,Conformation, beta-Sheet Protein,Conformation, beta-Strand Protein,Conformations, beta-Sheet Protein,Conformations, beta-Strand Protein,Protein Conformation, beta Sheet,Protein Conformation, beta Strand,Protein Conformations, beta-Sheet,Protein Conformations, beta-Strand,Sheet, beta-Pleated,Sheets, beta-Pleated,beta Pleated Sheet,beta Sheet,beta Sheets,beta Strand,beta Stranded Structures,beta Strands,beta-Pleated Sheets,beta-Sheet Protein Conformation,beta-Sheet Protein Conformations,beta-Strand Protein Conformation,beta-Strand Protein Conformations,beta-Stranded Structure
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001643 Bridged Bicyclo Compounds Saturated alicyclic hydrocarbon molecules consisting of two rings that have two non-adjacent atoms in common. Bicyclo Compounds,Bicyclo Compounds, Bridged
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.

Related Publications

Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
May 2013, Bioorganic & medicinal chemistry letters,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
October 2014, Current opinion in pharmacology,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
July 2016, The Journal of antimicrobial chemotherapy,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
August 2017, Bioorganic & medicinal chemistry letters,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
February 2023, Pharmaceuticals (Basel, Switzerland),
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
January 1995, Advances in experimental medicine and biology,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
May 2014, Journal of medicinal chemistry,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
January 2016, Research in pharmaceutical sciences,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
July 2015, Journal of medicinal chemistry,
Sebastian Franco-Ulloa, and Giuseppina La Sala, and Gian Pietro Miscione, and Marco De Vivo
March 2021, European journal of medicinal chemistry,
Copied contents to your clipboard!