Effects of adrenergic agonists and mitochondrial energy state on the Ca2+ transport systems of mitochondria. 1987

T P Goldstone, and I Roos, and M Crompton

This study investigates the effects of adrenergic agonists and mitochondrial energy state on the activities of the Ca2+ transport systems of female rat liver mitochondria. Tissue perfusion with the alpha-adrenergic agonist phenylephrine and with adrenaline, but not with the beta-adrenergic agonist isoprenaline, induced significant activation of the uniporter and the respiratory chain. Uniporter activation was evident under two sets of experimental conditions that excluded influences of delta psi, i.e., at high delta psi, where uniporter activity was delta psi independent, and at low delta psi, where uniporter conductance was measured. Preincubation of mitochondria with extracts from phenylephrine-perfused tissue quantitatively reproduced uniporter activation when comparison was made with mitochondria treated similarly with extracts from tissue perfused without agonist. Similar, but more extensive, data were obtained with heart mitochondria pretreated with extracts from hearts perfused with the alpha-adrenergic agonist methoxamine. Phenylephrine did not affect Ca2+ efflux mediated by the Na+-Ca2+ carrier or the Na+-independent system. In contrast, the liver mitochondrial Na+-Ca2+ carrier was activated by tissue perfusion with isoprenaline; the Na+-independent system was unaffected. Na+-Ca2+ carrier activation was not associated with any change in a number of basic bioenergetic parameters. It is concluded that the Ca2+ transport systems of liver mitochondria may be controlled in an opposing manner by alpha-adrenergic agonists (promotion of Ca2+ influx) and beta-adrenergic agonists (promotion of Ca2+ efflux). At delta psi values greater than 110 mV, the Na+-independent system was activated by increase in delta psi; the uniporter and Na+-Ca2+ carrier activities were insensitive to delta psi changes in this range.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone

Related Publications

T P Goldstone, and I Roos, and M Crompton
September 1980, European journal of biochemistry,
T P Goldstone, and I Roos, and M Crompton
March 1995, European journal of pharmacology,
T P Goldstone, and I Roos, and M Crompton
September 1976, The Journal of biological chemistry,
T P Goldstone, and I Roos, and M Crompton
December 1992, Molecular and cellular biochemistry,
T P Goldstone, and I Roos, and M Crompton
March 1989, Biochimica et biophysica acta,
T P Goldstone, and I Roos, and M Crompton
April 1984, Journal of neurochemistry,
T P Goldstone, and I Roos, and M Crompton
January 1976, Doklady Akademii nauk SSSR,
T P Goldstone, and I Roos, and M Crompton
January 1993, Developmental neuroscience,
T P Goldstone, and I Roos, and M Crompton
September 1988, Documenta ophthalmologica. Advances in ophthalmology,
Copied contents to your clipboard!