Modifications of the chromatin arrangement induced by ethidium bromide in isolated nuclei, analyzed by electron microscopy and flow cytometry. 1987

P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi

Ethidium bromide (EB) is widely used for investigating the DNA conformation in chromatin both with conventional and cytofluorimetric techniques. Since the interaction of the dye with DNA should result in structural deformations which can be different in isolated or in situ chromatin, a study has been performed on the effects caused by different amounts of EB and the analogous propidium iodide on isolated nuclei, in which chromatin maintains its native relationships with the other nuclear structures (envelope, nucleolus, interchromatin RNP, nuclear matrix). The results obtained by comparing ultrastructural observations in thin sections and in freeze-fracturing with conformational analysis in multiparameter flow cytometry indicate that the phenanthridinic fluorochromes, especially at the high concentrations used for cytofluorimetric analyses, cause deep rearrangements of the chromatin in situ. These effects consist both in aggregation and condensation of the fibers into the dense chromatin domains, and in an increase of the supernucleosomal configuration associated with an enlargement of interchromatin spaces in which the RNP particles appear particularly evident. These results, discussed with those available on isolated chromatin, suggest that any unwinding effect of the intercalating dyes on the DNA cause a general condensation of chromatin as a consequence of the constraints which characterize the organization of the chromatin inside the nucleus.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium

Related Publications

P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
November 1986, Cytometry,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
January 2020, Methods in molecular biology (Clifton, N.J.),
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
January 1991, Biotechnic & histochemistry : official publication of the Biological Stain Commission,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
April 1979, The Journal of cell biology,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
February 1972, Archives of biochemistry and biophysics,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
January 1986, Biophysical journal,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
January 1990, Tsitologiia,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
November 1982, Biochemical pharmacology,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
February 1989, Experimental cell research,
P Santi, and S Papa, and R del Coco, and E Falcieri, and N Zini, and F Marinelli, and N M Maraldi
March 1989, Cytometry,
Copied contents to your clipboard!