Rearrangement and expression of T cell receptor genes in cloned murine natural suppressor cell lines. 1987

B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
Department of Medicine, Stanford University School of Medicine, California 94305.

Naturally occurring suppressor cells of the in vitro mixed leukocyte culture reaction and of in vivo graft-vs.-host disease have been identified in the spleens of neonatal mice (1) and of adult mice recovering from total lymphoid irradiation (2), whole-body irradiation (3), and syngeneic marrow transplantation (4), or cyclophosphamide therapy (5). Using both positive and negative selection procedures, the suppressors were reported to be null lymphocytes that did not express mature macrophage surface markers, nor differentiate into mature macrophages in vitro, nor demonstrate natural killer (NK) activity (1). Subsequently, cloned lines of these natural suppressor (NS) cells were derived from either adult mice given total lymphoid irradiation (TLI) (2) or from neonates (6). The cloned NS cell lines expressed a surface phenotype (2, 6) similar to that reported previously for cloned NK cells (Thy-1(+), asialo-GM1(+), Ig(-), Lyt-1(-), Lyt-2(-), Ia(-), MAC-1(-)) (7-9). However, the NS cells did not show NK activity in the standard assay with YAC-1 target cells. The cloned NS lines suppressed the proliferation of responder cells and the generation of cytolytic cells in the mixed leukocyte reaction (MLR), and suppressed lethal graft-vs.-host disease in vivo (10, 11). In view of the unusual function and surface phenotype of the cells, the lineage of these cells remained unclear. To determine the lineage of the cloned NS cells, we searched for expression and rearrangement of the alpha and beta chain genes of the T cell antigen receptor, as well as that of the gamma chain gene. Studies of the phenotypically similar NK cell yielded conflicting results. Thus, cloned lines of murine NK cells were reported to have rearrangements of the beta chain genes, and to express mRNA for all three chains (12). In contrast, freshly purified rat or human large granular lymphocytes (LGL) were shown to express only the 1.0 kb mRNA species of the beta chain gene (13), indicative of D-J joining (14). Thus, some but not all cells with NK function express the T cell receptor and are members of the T cell lineage. The current report shows that the NS lines express full-length mRNA transcripts for the a and beta chain of the T cell receptor, as well as the gamma chain gene.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D016692 Receptors, Antigen, T-Cell, gamma-delta T-cell receptors composed of CD3-associated gamma and delta polypeptide chains and expressed primarily in CD4-/CD8- T-cells. The receptors appear to be preferentially located in epithelial sites and probably play a role in the recognition of bacterial antigens. The T-cell receptor gamma/delta chains are separate and not related to the gamma and delta chains which are subunits of CD3 (see ANTIGENS, CD3). Antigen Receptors, T-Cell, gamma-delta,T-Cell Receptors delta-Chain,T-Cell Receptors gamma-Chain,T-Cell Receptors, gamma-delta,TcR gamma-delta,Antigen T Cell Receptor, delta Chain,Antigen T Cell Receptor, gamma Chain,Receptors, Antigen, T Cell, gamma delta,T Cell Receptors, gamma delta,T-Cell Receptor delta-Chain,T-Cell Receptor gamma-Chain,T-Cell Receptor, gamma-delta,T Cell Receptor delta Chain,T Cell Receptor gamma Chain,T Cell Receptor, gamma delta,T Cell Receptors delta Chain,T Cell Receptors gamma Chain,TcR gamma delta,delta-Chain, T-Cell Receptor,delta-Chain, T-Cell Receptors,gamma-Chain, T-Cell Receptor,gamma-Chain, T-Cell Receptors,gamma-delta T-Cell Receptor,gamma-delta T-Cell Receptors,gamma-delta, TcR
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
January 1990, Viral immunology,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
August 1985, The EMBO journal,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
December 1985, Proceedings of the National Academy of Sciences of the United States of America,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
June 1986, Cell,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
August 1986, The Journal of experimental medicine,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
October 1980, Journal of immunology (Baltimore, Md. : 1950),
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
November 1987, European journal of immunology,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
January 1989, Hematologic pathology,
B Hertel-Wulff, and T Lindsten, and R Schwadron, and D M Gilbert, and M M Davis, and S Strober
January 1987, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!