Expression of gamma-interferon receptor in murine bone marrow-derived macrophages associated with macrophage differentiation: evidence of gamma-interferon receptors in the regulation of macrophage proliferation. 1987

B D Chen, and T H Chou, and V Ratanatharathorn
Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201.

The effect of purified, recombinant murine gamma interferon (IFN-gamma) on the regulation of macrophage proliferation induced by colony-stimulating factor 1 (CSF-1) was investigated. Although both hemopoietic stem cells (GM-CFC) and tissue-derived peritoneal exudate macrophages (PEM) proliferated in response to CSF-1, the more mature PEM were much more sensitive to an antiproliferative effect of IFN-gamma. The role of IFN-gamma receptor expression and its relationship to growth inhibition was examined. Bone marrow cells as a whole did not exhibit an appreciable amount of IFN-gamma receptor binding activity. Likewise, nonadherent (NA) cells derived from CSF-1-stimulated bone marrow cultures displayed low levels of IFN-gamma receptor binding activity. On the contrary, more mature adherent (AD) cells (monocytes/macrophages) from the same culture exhibited high levels of IFN-gamma receptor binding activity, which continued to increase with culture time. The elevated IFN-gamma binding activity is due to an increase in total receptor number rather than the binding affinity as judged by Scatchard analysis. Similar to the relationship between PEM and GM-CFC, more mature AD cells were also more susceptible to the inhibitory effect of IFN-gamma on CSF-1-induced proliferation than their less mature NA counterparts. The fact that the sensitivity to IFN-gamma correlated well with the expression of existing IFN-gamma receptors strongly suggests that the inhibitory effect is mediated through IFN-gamma receptors. This study shows that the expression of IFN-gamma receptors in mononuclear phagocytes may not only represent one of the phenotypic parameters acquired by the growing macrophages during the process of differentiation, but may play some role in controlling proliferation.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B D Chen, and T H Chou, and V Ratanatharathorn
August 1990, Journal of immunology (Baltimore, Md. : 1950),
B D Chen, and T H Chou, and V Ratanatharathorn
January 1987, Lymphokine research,
B D Chen, and T H Chou, and V Ratanatharathorn
June 1984, Transplantation,
B D Chen, and T H Chou, and V Ratanatharathorn
July 1989, Cellular immunology,
B D Chen, and T H Chou, and V Ratanatharathorn
April 1982, Journal of immunology (Baltimore, Md. : 1950),
B D Chen, and T H Chou, and V Ratanatharathorn
January 1997, Methods in molecular biology (Clifton, N.J.),
B D Chen, and T H Chou, and V Ratanatharathorn
January 1990, Methods in molecular biology (Clifton, N.J.),
B D Chen, and T H Chou, and V Ratanatharathorn
January 1982, Advances in experimental medicine and biology,
Copied contents to your clipboard!