In vitro evidence for disappearance of erythroid progenitor T suppressor cells following allogeneic bone marrow transplantation for severe aplastic anemia. 1988

K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
Pittsburgh Cancer Institute Bone Marrow Transplant Program, Montefiore Hospital, University of Pittsburgh School of Medicine, PA.

In vitro coculture studies were performed in five patients with severe aplastic anemia (SAA) and their normal HLA-matched donors before and after allogeneic bone marrow transplantation (BMT) to determine whether the erythropoietic function of T cells is abnormal in this disorder. These coculture studies used fresh or cryopreserved marrow T lymphocytes with fresh or cryopreserved marrow T cell-depleted target cells. Four of five aplastic patients had little or no transfusion exposure before studies. The composite results showed that, in comparison to the erythropoietic effects of normal HLA-identical marrow T lymphocytes or engrafted T lymphocytes, T lymphocytes collected from the aplastic patients before BMT consistently suppressed or failed to support CFUE and BFUE growth optimally from autologous marrow, HLA-identical marrow, or engrafted aplastic T cell-depleted marrows. This T cell abnormality was not observed in four multiply transfused leukemics and three patients with myelodysplastic syndrome. Marker analyses of SAA marrow T lymphocytes performed before and after BMT suggested that the erythropoietic functional abnormality was due to abnormal marrow T cell composition reflecting an excess of activated Tac+, T3+, T11+ lymphocytes. Collectively, these in vitro studies provide firmer in vitro evidence implicating T cells in the pathogenesis of SAA. The erythropoietic T cells abnormalities in SAA are fully corrected by allogeneic BMT.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D009190 Myelodysplastic Syndromes Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA. Dysmyelopoietic Syndromes,Hematopoetic Myelodysplasia,Dysmyelopoietic Syndrome,Hematopoetic Myelodysplasias,Myelodysplasia, Hematopoetic,Myelodysplasias, Hematopoetic,Myelodysplastic Syndrome,Syndrome, Dysmyelopoietic,Syndrome, Myelodysplastic,Syndromes, Dysmyelopoietic,Syndromes, Myelodysplastic
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000741 Anemia, Aplastic A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements. Anemia, Hypoplastic,Aplastic Anaemia,Aplastic Anemia,Anaemia, Aplastic,Aplastic Anaemias,Aplastic Anemias,Hypoplastic Anemia,Hypoplastic Anemias
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D014019 Tissue Donors Individuals supplying living tissue, organs, cells, blood or blood components for transfer or transplantation to histocompatible recipients. Organ Donors,Donors,Ovum Donors,Semen Donors,Transplant Donors,Donor,Donor, Organ,Donor, Ovum,Donor, Semen,Donor, Tissue,Donor, Transplant,Donors, Organ,Donors, Ovum,Donors, Semen,Donors, Tissue,Donors, Transplant,Organ Donor,Ovum Donor,Semen Donor,Tissue Donor,Transplant Donor

Related Publications

K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
October 1991, Seminars in hematology,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
August 1997, Bone marrow transplantation,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
September 1990, Nihon rinsho. Japanese journal of clinical medicine,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
March 2024, International journal of hematology,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
October 2000, Bone marrow transplantation,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
April 1995, Clinical and investigative medicine. Medecine clinique et experimentale,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
August 2001, International journal of hematology,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
March 1981, JAMA,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
April 1996, Zhonghua yi xue za zhi = Chinese medical journal; Free China ed,
K F Mangan, and M T Mullaney, and C S Rosenfeld, and R K Shadduck
July 1988, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
Copied contents to your clipboard!